Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 341: 122903, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952921

RESUMO

Wetlands are among the most threatened ecosystems on the planet and pollution is a major factor causing the decline of wetland biodiversity. Despite the increasing use of pesticides, their fate and effects on freshwater reptiles remain largely unknown. We studied the European pond turtle (Emys orbicularis), a long-lived species at risk with a high exposure potential to pesticides. Between 2018 and 2020, we measured 29 pesticides and metabolites in 408 blood samples of turtles from two populations in the Camargue wetland (France). We were able to quantify 24 compounds and at least one pesticide or one degradation product in 62.5% of samples. Pesticide occurrences and concentrations were low, except for a herbicide widely used in rice cultivation and locally detected in water: bentazone that reached high blood concentrations in E. orbicularis. The occurrence and the concentration of pesticides in E. orbicularis blood depended mainly on the site and the sampling date in relation to pesticide application. Individual characteristics (sex, age, body condition) did not explain the occurrence or the concentration of pesticides found in turtle blood. Assessing the exposure of aquatic wildlife to a cocktail of currently-used pesticides is a first and crucial step before studying their effects at the individual and population levels.


Assuntos
Praguicidas , Tartarugas , Poluentes Químicos da Água , Animais , Praguicidas/análise , Áreas Alagadas , Ecossistema , Monitoramento Ambiental , Estações do Ano , Água Doce , França , Poluentes Químicos da Água/análise
2.
Ecohealth ; 20(1): 84-92, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37140742

RESUMO

It is increasingly suggested that the dynamics of antimicrobial-resistant bacteria in the wild are mostly anthropogenically driven, but the spatial and temporal scales at which these phenomena occur in landscapes are only partially understood. Here, we explore this topic by studying antimicrobial resistance in the commensal bacteria from micromammals sampled at 12 sites from a large heterogenous landscape (the Carmargue area, Rhone Delta) along a gradient of anthropization: natural reserves, rural areas, towns, and sewage-water treatment plants. There was a positive relationship between the frequency of antimicrobial-resistant bacteria and the level of habitat anthropization. Although low, antimicrobial resistance was also present in natural reserves, even in the oldest one, founded in 1954. This study is one of the first to support the idea that rodents in human-altered habitats are important components of the environmental pool of resistance to clinically relevant antimicrobials and also that a "One Health" approach is required to assess issues related to antimicrobial resistance dynamics in anthropized landscapes.


Assuntos
Ecossistema , Roedores , Animais , Humanos , Bactérias , Antibacterianos
3.
Mov Ecol ; 11(1): 11, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774513

RESUMO

BACKGROUND: As for other life history traits, variation occurs in movement patterns with important impacts on population demography and community interactions. Individuals can show variation in the extent of seasonal movement (or migration) or can change migratory routes among years. Internal factors, such as age or body condition, may strongly influence changes in movement patterns. Indeed, young individuals often tend to move across larger spatial scales compared to adults, but relatively few studies have investigated the proximate and ultimate factors driving such variation. This is particularly the case for seabirds in which the sub-adult period is long and difficult to follow. Here, we examine migration variation and the factors that affect it in a common Mediterranean seabird, the Yellow-legged gull (Larus michahellis). METHODS: The data include the encounter histories of 5158 birds marked as fledglings between 1999 and 2004 at 14 different colonies in southern France and resighted over 10 years. Using a multi-event mark-recapture modeling framework, we use these data to estimate the probability of movement and survival, taking into account recapture heterogeneity and age. RESULTS: In accordance with previous studies, we find that young individuals have greater mobility than older individuals. However, the spatial extent of juvenile movements depends on natal colony location, with a strong difference in the proportion of sedentary individuals among colonies less than 50 km apart. Colony quality or local population dynamics may explain these differences. Indeed, young birds from colonies with strong juvenile survival probabilities (~ 0.75) appear to be more sedentary than those from colonies with low survival probabilities (~ 0.36). CONCLUSIONS: This study shows the importance of studying individuals of different ages and from different colonies when trying to understand seabird movement strategies. Local breeding success and the availability of food resources may explain part of the among colony differences we observe and require explicit testing. We discuss our results with respect to the feedback loop that may occur between breeding success and mobility, and its potential implications for population demography and the dissemination of avian disease at different spatial scales.

4.
Mar Pollut Bull ; 187: 114483, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36608475

RESUMO

Gulls can be particularly vulnerable to ingesting plastics when using anthropogenic food sources, with potential consequences for survival and reproductive success. Although birds are known to switch foraging habitats over the breeding season to provide higher quality food for chick provisioning, it is unclear what this means regarding the ingestion of plastics. Here, we tested whether breeding gulls decrease the amount of plastic ingested during reproduction by collecting pellets from a series of monitored nests at a large yellow-legged gull (Larus michahellis) colony in southern France. We found at least one plastic item in 83.9 % of the analyzed pellets, with the most abundant plastic type being polyethylene-based sheet plastic. As predicted, we found a slight decrease in the number of plastic items in pellets at chick hatching. These results suggest that gulls, like other birds, may adjust foraging habits to provide more digestible, less risky, food to chicks.


Assuntos
Charadriiformes , Animais , Plásticos , Estações do Ano , Aves , Ingestão de Alimentos
5.
Ecol Evol ; 12(6): e8974, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784041

RESUMO

Wild animal species living in anthropogenic areas are commonly carriers of antimicrobial-resistant bacteria (AMRB), but their role in the epidemiology of these bacteria is unclear. Several studies on AMRB in wildlife have been cross-sectional in design and sampled individual animals at only one point in time. To further understand the role of wildlife in maintaining and potentially transmitting these bacteria to humans and livestock, longitudinal studies are needed in which samples are collected from individual animals over multiple time periods. In Europe, free-ranging yellow-legged gulls (Larus michahellis) commonly live in industrialized areas, forage in landfills, and have been found to carry AMRB in their feces. Using bacterial metagenomics and antimicrobial resistance characterization, we investigated the spatial and temporal patterns of AMRB in a nesting colony of yellow-legged gulls from an industrialized area in southern France. We collected 54 cloacal swabs from 31 yellow-legged gull chicks in 20 nests on three dates in 2016. We found that AMRB in chicks increased over time and was not spatially structured within the gull colony. This study highlights the complex occurrence of AMRB in a free-ranging wildlife species and contributes to our understanding of the public health risks and implications associated with ARMB-carrying gulls living in anthropogenic areas.

6.
Ticks Tick Borne Dis ; 13(1): 101852, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717114

RESUMO

Avian infecting piroplasms are largely under-studied compared to other hemoparasites, and this paucity of information has blurred our phylogenetic and biological comprehension of this important group as a whole. In the present study, we detected and characterized Babesia from yellow-legged gull (Larus michahellis) chicks from a colony in southern France. Based on morphological and molecular characterizations, a new Babesia species belonging to the Peircei group, a clade of avian-specific piroplasms, was identified. Due to the complexity of species delineations and the low number of parasites characterized in this clade to date, a species name was not yet attributed; we refer to it for now as Babesia sp. YLG (Yellow-Legged Gull). High prevalence (85% and 58% in 2019 and 2020, respectively) and high parasitemia (up to 20% of parasitized erythrocytes) were recorded in chicks, without any obvious clinical signs of infection. Although the 16 isolates examined had identical 18S rRNA gene sequences, six genetic variants were described based on partial cox1 sequencing, with evidence of chicks co-infected by two variants. Transmission of Babesia sp. YLG via the soft tick Ornithodoros maritimus is discussed.


Assuntos
Babesia , Babesiose , Charadriiformes , Animais , Babesia/genética , Babesiose/parasitologia , Aves , Filogenia , RNA Ribossômico 18S/genética
7.
Trends Parasitol ; 38(3): 195-204, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34952798

RESUMO

Fasciola hepatica is a worldwide emerging and re-emerging parasite heavily affecting several regions in South America. Some lymnaeid snail species of American origin are among the major hosts of F. hepatica worldwide. Recent paleoparasitological findings detected its DNA in a 2300-year-old sample in Patagonia, countering the common hypothesis of the recent arrival of F. hepatica in the Americas during European colonization. Thus, the theory of an initial introduction in the 1500s can no longer be sustained. This article discusses how it was possible for F. hepatica to reach and spread in the Americas in relation to the availability and compatibility of hosts through natural and incidental introductions. Our study will serve to better understand the ongoing Neotropical scenario of fasciolosis.


Assuntos
Fasciola hepatica , Fasciolíase , América/epidemiologia , Animais , Fasciola hepatica/genética , Fasciolíase/epidemiologia , Fasciolíase/parasitologia , Caramujos/parasitologia , América do Sul/epidemiologia
8.
Evol Appl ; 14(11): 2571-2575, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34815739

RESUMO

Recent pandemics have highlighted the urgency to connect disciplines studying animal, human, and environment health, that is, the "One Health" concept. The One Health approach takes a holistic view of health, but it has largely focused on zoonotic diseases while not addressing oncogenic processes. We argue that cancers should be an additional key focus in the One Health approach based on three factors that add to the well-documented impact of humans on the natural environment and its implications on cancer emergence. First, human activities are oncogenic to other animals, exacerbating the dynamics of oncogenesis, causing immunosuppressive disorders in wildlife with effects on host-pathogen interactions, and eventually facilitating pathogen spillovers. Second, the emergence of transmissible cancers in animal species (including humans) has the potential to accelerate biodiversity loss across ecosystems and to become pandemic. It is crucial to understand why, how, and when transmissible cancers emerge and spread. Third, translating knowledge of tumor suppressor mechanisms found across the Animal Kingdom to human health offers novel insights into cancer prevention and treatment strategies.

9.
Environ Toxicol Chem ; 40(8): 2261-2268, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33928683

RESUMO

Many banned persistent organic pollutants (POPs) remain for decades in the aquatic environment and can have harmful effects on long-lived predators because of their high bioaccumulation and biomagnification potentials. We investigated the occurrence and levels of 18 polychlorinated biphenyls (PCBs) and 16 organochlorine pesticides in European pond turtles (n = 174) from April to July 2018 in the Camargue wetland, France. Although the Camargue was highly contaminated in previous decades, plasma occurrence and levels of POPs were very low: we were able to quantify only 3 of the 34 compounds we analyzed in >10% of the turtles. The burdens from POPs did not differ between males and females and were uncorrelated with sampling date and body mass. We observed differences in POP burdens between turtles from the 2 sampling sites. One possible explanation is that the sampling sites were in different agricultural hydraulic systems: plasma occurrence and levels were higher for PCB-52 and hexachlorobenzene in turtles captured in drainage channels and for PCB-153 at the site that receives irrigation. Finally, the occurrence and levels of PCB-153 in turtles increased with age, likely because of bioaccumulation and much higher exposure 20 to 30 yr ago than now. Environ Toxicol Chem 2021;40:2261-2268. © 2021 SETAC.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Tartarugas , Animais , Monitoramento Ambiental , Feminino , Masculino , Poluentes Orgânicos Persistentes , Bifenilos Policlorados/análise , Áreas Alagadas
10.
Ecol Evol ; 11(5): 2249-2260, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717452

RESUMO

Population time series analysis is an integral part of conservation biology in the current context of global changes. To quantify changes in population size, wildlife counts only provide estimates because of various sources of error. When unaccounted for, such errors can obscure important ecological patterns and reduce confidence in the derived trend. In the case of highly gregarious species, which are common in the animal kingdom, the estimation of group size is an important potential bias, which is characterized by high variance among observers. In this context, it is crucial to quantify the impact of observer changes, inherent to population monitoring, on i) the minimum length of population time series required to detect significant trends and ii) the accuracy (bias and precision) of the trend estimate.We acquired group size estimation error data by an experimental protocol where 24 experienced observers conducted counting simulation tests on group sizes. We used this empirical data to simulate observations over 25 years of a declining population distributed over 100 sites. Five scenarios of changes in observer identity over time and sites were tested for each of three simulated trends (true population size evolving according to deterministic models parameterized with declines of 1.1%, 3.9% or 7.4% per year that justify respectively a "declining," "vulnerable" or "endangered" population under IUCN criteria).We found that under realistic field conditions observers detected the accurate value of the population trend in only 1.3% of the cases. Our results also show that trend estimates are similar if many observers are spatially distributed among the different sites, or if one single observer counts all sites. However, successive changes in observer identity over time lead to a clear decrease in the ability to reliably estimate a given population trend, and an increase in the number of years of monitoring required to adequately detect the trend.Minimizing temporal changes of observers improve the quality of count data and help taking appropriate management decisions and setting conservation priorities. The same occurs when increasing the number of observers spread over 100 sites. If the population surveyed is composed of few sites, then it is preferable to perform the survey by one observer. In this context, it is important to reconsider how we use estimated population trend values and potentially to scale our decisions according to the direction and duration of estimated trends, instead of setting too precise threshold values before action.

11.
Transbound Emerg Dis ; 68(4): 2274-2286, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33068493

RESUMO

Fasciolosis is a worldwide spread parasitosis mainly caused by the trematode Fasciola hepatica. This disease is particularly important for public health in tropical regions, but it can also affect the economies of many developed countries due to large infections in domestic animals. Although several studies have tried to understand the transmission by studying the prevalence of different host species, only a few have used population genetic approaches to understand the links between domestic and wildlife infections. Here, we present the results of such genetic approach combined with classical parasitological data (prevalence and intensity) by studying domestic and wild definitive hosts from Camargue (southern France) where fasciolosis is considered as a problem. We found 60% of domestic hosts (cattle) infected with F. hepatica but lower values in wild hosts (nutria, 19%; wild boars, 4.5%). We explored nine variable microsatellite loci for 1,148 adult flukes recovered from four different populations (non-treated cattle, treated cattle, nutria and wild boars). Populations from the four groups differed, though we found a number of migrants particularly non-treated cattle and nutria. Overall, we detected 729 different multilocus genotypes (from 783 completely genotyped individuals) and only 46 genotypes repeated across samples. Finally, we experimentally infected native and introduced intermediate snail hosts to explore their compatibility with F. hepatica and assess the risks of fasciolosis expansion in the region. The introduced species Galba truncatula and Pseudosuccinea columella attained the higher values of overall compatibility in relation to the European species. However, concerning the origin, sympatric combinations of G. truncatula were more compatible (higher prevalence, intensity and survival) than the allopatric tested. According to our results, we should note that the assessment of epidemiological risks cannot be limited to a single host-parasite system, but should focus on understanding the diversity of hosts in the heterogeneous environment through space and time.


Assuntos
Fasciola hepatica , Fasciolíase , Trematódeos , Animais , Bovinos , Fasciola hepatica/genética , Fasciolíase/epidemiologia , Fasciolíase/veterinária , Variação Genética , Caramujos
12.
Microb Ecol ; 81(3): 770-783, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33025063

RESUMO

Characterising within-host microbial interactions is essential to understand the drivers that shape these interactions and their consequences for host ecology and evolution. Here, we examined the bacterial microbiota hosted by the seabird soft tick Ornithodoros maritimus (Argasidae) in order to uncover bacterial interactions within ticks and how these interactions change over tick development. Bacterial communities were characterised through next-generation sequencing of the V3-V4 hypervariable region of the bacterial 16S ribosomal RNA gene. Bacterial co-occurrence and co-exclusion were determined by analysing networks generated from the metagenomic data obtained at each life stage. Overall, the microbiota of O. maritimus was dominated by four bacterial genera, namely Coxiella, Rickettsia, Brevibacterium and Arsenophonus, representing almost 60% of the reads. Bacterial diversity increased over tick development, and adult male ticks showed higher diversity than did adult female ticks. Bacterial networks showed that co-occurrence was more frequent than co-exclusion and highlighted substantial shifts across tick life stages; interaction networks changed from one stage to the next with a steady increase in the number of interactions through development. Although many bacterial interactions appeared unstable across life stages, some were maintained throughout development and were found in both sexes, such as Coxiella and Arsenophonus. Our data support the existence of a few stable interactions in O. maritimus ticks, on top of which bacterial taxa accumulate from hosts and/or the environment during development. We propose that stable associations delineate core microbial interactions, which are likely to be responsible for key biological functions.


Assuntos
Argasidae , Ornithodoros , Rickettsia , Animais , Aves , Feminino , Masculino , RNA Ribossômico 16S/genética , Rickettsia/genética
13.
Front Vet Sci ; 7: 570157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195558

RESUMO

Functional dispersal (between-site movement, with or without subsequent reproduction) is a key trait acting on the ecological and evolutionary trajectories of a species, with potential cascading effects on other members of the local community. It is often difficult to quantify, and particularly so for small organisms such as parasites. Understanding this life history trait can help us identify the drivers of population dynamics and, in the case of vectors, the circulation of associated infectious agents. In the present study, functional dispersal of the soft tick Ornithodoros maritimus was studied at a small scale, within a colony of yellow-legged gulls (Larus michahellis). Previous work showed a random distribution of infectious agents in this tick at the within-colony scale, suggesting frequent tick movement among nests. This observation contrasts with the presumed strong endophilic nature described for this tick group. By combining an experimental field study, where both nest success and tick origin were manipulated, with Capture-Mark-Recapture modeling, dispersal rates between nests were estimated taking into account tick capture probability and survival, and considering an effect of tick sex. As expected, tick survival probability was higher in successful nests, where hosts were readily available for the blood meal, than in unsuccessful nests, but capture probability was lower. Dispersal was low overall, regardless of nest state or tick sex, and there was no evidence for tick homing behavior; ticks from foreign nests did not disperse more than ticks in their nest of origin. These results confirm the strong endophilic nature of this tick species, highlighting the importance of life cycle plasticity for adjusting to changes in host availability. However, results also raise questions with respect to the previously described within-colony distribution of infectious agents in ticks, suggesting that tick dispersal either occurs over longer temporal scales and/or that transient host movements outside the breeding period result in vector exposure to a diverse range of infectious agents.

14.
Vet Parasitol ; 275: 108955, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31648107

RESUMO

Fasciolosis is an important food-borne parasitic disease affecting over two million people worldwide with economic losses related to cattle production of up to US$ 3 billion annually. Despite the long known presence of Fasciola hepatica in the Caribbean islands its transmission is not well known. This study reviews historical and recent data on fasciolosis in the West Indies, revealing for the first time the outcomes of sympatric and allopatric fluke/snail interactions in the area by exploring the susceptibility of four lymnaeid species after exposure to F. hepatica isolates from Cuba, the Dominican Republic and France. Overall, Galba cubensis showed a mean prevalence of 71.8% and appears to be the most suitable intermediate host species irrespective of the isolate used. Sympatric combinations (snail and parasite from the same country) were generally more compatible (higher susceptibility, parasite intensity and snail survival post-exposure) and only the allopatric interaction of French G. truncatula/Cuban F. hepatica attained 100% prevalence and mean intensity over 33 rediae/snail. However, certain Dominican populations of Pseudosuccinea columella showed high parasite intensities (>30 rediae/snail) when infected with Cuban flukes, highlighting the potential risks of biological introductions. Overall, high compatibility in most sympatric combinations compared to low or moderate compatibility in allopatric ones, suggests the existence of local adaptation from a long sustained interaction that has led to high rates of transmission. Interestingly, attempts to infect G. schirazensis with sympatric and allopatric flukes failed and coupled with the lowest survival rates which supposes a low risk of fasciolosis transmission in areas where this is the only snail species. Although there are significant gaps in the actual status of fasciolosis transmission from several islands in the West Indies these results show a permanent risk. We conclude that fasciolosis transmission is high in areas where the local snail, G. cubensis, occurs, and will be even higher in the presence of the invasive P. columella.


Assuntos
Vetores de Doenças , Fasciola hepatica/fisiologia , Fasciolíase/transmissão , Caramujos/parasitologia , Análise de Variância , Animais , Bovinos , França , Estimativa de Kaplan-Meier , Estatísticas não Paramétricas , Índias Ocidentais
15.
Parasit Vectors ; 11(1): 559, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30359285

RESUMO

BACKGROUND: Pseudosuccinea columella is one of the most widespread vectors of Fasciola hepatica, a globally distributed trematode that affects humans, livestock and wildlife. The exclusive occurrence in Cuba of susceptible and naturally-resistant populations to F. hepatica within this snail species, offers a fascinating model for evolutionary biology, health sciences and vector control strategies. In particular, resistance in P. columella is characterized by the encapsulation of the parasite by host's immune cells and has been experimentally tested using different Cuban F. hepatica isolates with no records of successful infection. Here, we aimed to explore for the first time, the effect of different parasite doses, successive exposures and different parasite origins on the infection outcomes of the two phenotypes of P. columella occurring in Cuba. METHODS: To increase the chances for F. hepatica to establish, we challenged Cuban P. columella with increasing single parasite doses of 5, 15 or 30 miracidia and serial exposures (three-times) of 5 miracidia using a sympatric F. hepatica isolate from Cuba, previously characterized by microsatellite markers. Additionally, we exposed the snails to F. hepatica from different geographical origins (i.e. Dominican Republic and France). Parasite prevalence, redial burden and survival of snails were recorded at 25 days post-exposure. RESULTS: No parasite development was noted in snails from the resistant populations independent of the experimental approach. Contrastingly, an overall increase in prevalence and redial burden was observed in susceptible snails when infected with high miracidia doses and after serial exposures. Significant differences in redial burden between single 15 miracidia and serial 3 × 5 miracidia infected snails suggest that immune priming potentially occurs in susceptible P. columella. Compatibility differences of allopatric (Caribbean vs European) F. hepatica with susceptible snails were related to the geographical scale of the combinations. CONCLUSIONS: Here, the effectiveness of P. columella resistance to F. hepatica does not decline with increasing parasite doses, successive infection or different geographical origins of parasite isolates, while presenting new evidence for specificity for infection in susceptible P. columella snails. Understanding the peculiarities of the P. columella-F. hepatica interaction and the extent of the resistant phenotype is crucial for an effective parasite control and for developing alternatives to tackle fasciolosis transmission.


Assuntos
Fasciola hepatica/fisiologia , Caramujos/parasitologia , Animais , Cuba , Interações Hospedeiro-Parasita , Filogeografia
16.
Trends Parasitol ; 34(10): 891-903, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30195634

RESUMO

Fasciolosis is a worldwide disease caused by the liver fluke Fasciola spp. This food- and water-borne disease is a major public health and veterinary issue. It is currently (re)emerging in several regions mainly due to the rapid evolution of human activities. This article reviews the current knowledge of the impact of irrigation-system management, livestock management, and human diet and hygiene habits on the emergence of fasciolosis. We also identify the gaps in this knowledge and the possible solutions for limiting these impacts. Integrated control seems to be the most effective solution for controlling fasciolosis, because it enables monitoring, prevention, and rapid action in case of the (re)emergence of the disease.


Assuntos
Fasciolíase/transmissão , Atividades Humanas/estatística & dados numéricos , Agricultura , Animais , Dieta , Fasciolíase/epidemiologia , Fasciolíase/prevenção & controle , Humanos , Fatores de Risco
17.
Evol Appl ; 11(6): 836-844, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29928293

RESUMO

Both field and experimental evolution studies have demonstrated that organisms naturally or artificially exposed to environmental oncogenic factors can, sometimes rapidly, evolve specific adaptations to cope with pollutants and their adverse effects on fitness. Although numerous pollutants are mutagenic and carcinogenic, little attention has been given to exploring the extent to which adaptations displayed by organisms living in oncogenic environments could inspire novel cancer treatments, through mimicking the processes allowing these organisms to prevent or limit malignant progression. Building on a substantial knowledge base from the literature, we here present and discuss this progressive and promising research direction, advocating closer collaboration between the fields of medicine, ecology, and evolution in the war against cancer.

18.
Trends Cancer ; 4(3): 169-172, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29506667

RESUMO

Age is one of the strongest predictors of cancer and risk of death from cancer. Cancer is therefore generally viewed as a senescence-related malady. However, cancer also exists at subclinical levels in humans and other animals, but its earlier effects on the body are poorly known by comparison. We argue here that cancer is a significant but ignored burden on the body and is likely to be a strong selective force from early during the lifetime of an organism. It is time to adopt this novel view of malignant pathologies to improve our understanding of the ways in which oncogenic phenomena influence the ecology and evolution of animals long before their negative impacts become evident and fatal.


Assuntos
Senescência Celular , Neoplasias , Animais , Humanos
19.
Proc Biol Sci ; 285(1875)2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29563261

RESUMO

Genetic diversity is essential for adaptive capacities, providing organisms with the potential of successfully responding to intrinsic and extrinsic challenges. Although a clear reciprocal link between genetic diversity and resistance to parasites and pathogens has been established across taxa, the impact of loss of genetic diversity by inbreeding on the emergence and progression of non-communicable diseases, such as cancer, has been overlooked. Here we provide an overview of such associations and show that low genetic diversity and inbreeding associate with an increased risk of cancer in both humans and animals. Cancer being a multifaceted disease, loss of genetic diversity can directly (via accumulation of oncogenic homozygous mutations) and indirectly (via increased susceptibility to oncogenic pathogens) impact abnormal cell emergence and escape of immune surveillance. The observed link between reduced genetic diversity and cancer in wildlife may further imperil the long-term survival of numerous endangered species, highlighting the need to consider the impact of cancer in conservation biology. Finally, the somewhat incongruent data originating from human studies suggest that the association between genetic diversity and cancer development is multifactorial and may be tumour specific. Further studies are therefore crucial in order to elucidate the underpinnings of the interactions between genetic diversity, inbreeding and cancer.


Assuntos
Variação Genética , Endogamia , Neoplasias , Animais , Animais Domésticos , Animais Selvagens , Predisposição Genética para Doença , Humanos , Mutação , Neoplasias/epidemiologia , Neoplasias/genética , Neoplasias/veterinária , Densidade Demográfica , Fatores de Risco
20.
Int J Parasitol Parasites Wildl ; 6(2): 122-130, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28620577

RESUMO

The epidemiology of vector-borne zoonoses depends on the movement of both hosts and vectors, which can differ greatly in intensity across spatial scales. Because of their life history traits and small size, vector dispersal may be frequent, but limited in distance. However, little information is available on vector movement patterns at local spatial scales, and particularly for ticks, transmitting the greatest diversity of recognized infectious agents. To test the degree to which ticks can disperse and disseminate pathogens at local scales, we investigated the temporal dynamics and population structure of the soft tick Ornithodoros maritimus within a colony of its seabird host, the Yellow-legged gull Larus michahellis. Ticks were repeatedly sampled at a series of nests during the host breeding season. In half of the nests, ticks were collected (removal sampling), in the other half, ticks were counted and returned to the nest. A subsample of ticks was screened for known bacteria, viruses and parasites using a high throughput real-time PCR system to examine their distribution within the colony. The results indicate a temporal dynamic in the presence of tick life stages over the season, with the simultaneous appearance of juvenile ticks and hatched chicks, but no among-nest spatial structure in tick abundance. Removal sampling significantly reduced tick numbers, but only from the fourth visit onward. Seven bacterial isolates, one parasite species and one viral isolate were detected but no spatial structure in their presence within the colony was found. These results suggest weak isolation among nests and that tick dispersal is likely frequent enough to quickly recolonize locally-emptied patches and disseminate pathogens across the colony. Vector-mediated movements at local scales may therefore play a key role in pathogen emergence and needs to be considered in conjunction with host movements for predicting pathogen circulation and for establishing effective control strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA