Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 2141-2151, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38827235

RESUMO

Molecular docking is a widely used technique in drug discovery to predict the binding mode of a given ligand to its target. However, the identification of the near-native binding pose in docking experiments still represents a challenging task as the scoring functions currently employed by docking programs are parametrized to predict the binding affinity, and, therefore, they often fail to correctly identify the ligand native binding conformation. Selecting the correct binding mode is crucial to obtaining meaningful results and to conveniently optimizing new hit compounds. Deep learning (DL) algorithms have been an area of a growing interest in this sense for their capability to extract the relevant information directly from the protein-ligand structure. Our review aims to present the recent advances regarding the development of DL-based pose selection approaches, discussing limitations and possible future directions. Moreover, a comparison between the performances of some classical scoring functions and DL-based methods concerning their ability to select the correct binding mode is reported. In this regard, two novel DL-based pose selectors developed by us are presented.

2.
ACS Med Chem Lett ; 15(4): 470-477, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38628786

RESUMO

A series of 1-(4-sulfamoylbenzoyl)piperidine-4-carboxamides deriving from substituted piperazines/benzylamines was designed, synthesized, and tested on human carbonic anhydrase (hCA). The inhibitory activity of the new sulfonamides was analyzed using acetazolamide (AAZ) as a standard inhibitor against hCA I, II, IX, and XII. Several sulfonamides showed both inhibitory activity at low nanomolar concentrations and selectivity against the cytosolic hCA II isoform, and the same trend was observed on the tumor-associated hCA IX and XII. The benzenesulfonamido carboxamides 11 and 15 were the most potent of the piperazino- and benzylamino-based series, respectively. Docking and molecular dynamics studies related the high selectivity of compound 11 toward the tumor-associated hCA isoforms to its capability to participate in favorable interactions within hCA IX and hCA XII active sites, whereas no such interactions were detected within both hCA I and hCA II isoforms.

3.
Front Chem ; 12: 1362992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440776

RESUMO

This comprehensive review, covering 2021-2023, explores the multifaceted chemical and pharmacological potential of coumarins, emphasizing their significance as versatile natural derivatives in medicinal chemistry. The synthesis and functionalization of coumarins have advanced with innovative strategies. This enabled the incorporation of diverse functional fragments or the construction of supplementary cyclic architectures, thereby the biological and physico-chemical properties of the compounds obtained were enhanced. The unique chemical structure of coumarine facilitates binding to various targets through hydrophobic interactions pi-stacking, hydrogen bonding, and dipole-dipole interactions. Therefore, this important scaffold exhibits promising applications in uncountable fields of medicinal chemistry (e.g., neurodegenerative diseases, cancer, inflammation).

4.
Bioorg Chem ; 144: 107164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306824

RESUMO

Cancer spreading through metastatic processes is one of the major causes of tumour-related mortality. Metastasis is a complex phenomenon which involves multiple pathways ranging from cell metabolic alterations to changes in the biophysical phenotype of cells and tissues. In the search for new effective anti-metastatic agents, we modulated the chemical structure of the lead compound AA6, in order to find the structural determinants of activity, and to identify the cellular target responsible of the downstream anti-metastatic effects observed. New compounds synthesized were able to inhibit in vitro B16-F10 melanoma cell invasiveness, and one selected compound, CM365, showed in vivo anti-metastatic effects in a lung metastasis mouse model of melanoma. Septin-4 was identified as the most likely molecular target responsible for these effects. This study showed that CM365 is a promising molecule for metastasis prevention, remarkably effective alone or co-administered with drugs normally used in cancer therapy, such as paclitaxel.


Assuntos
Neoplasias Pulmonares , Melanoma Experimental , Animais , Camundongos , Septinas , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Drug Discov Today ; 29(2): 103860, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128717

RESUMO

Carnosine, an endogenous dipeptide, has been found to have a plethora of medicinal properties, such as antioxidant, antiageing, and chelating effects, but with one downside: a short half-life. Carnosinases and two hydrolytic enzymes, which remain enigmatic, are responsible for these features. Hence, here we emphasize why research is valuable for better understanding crucial concepts like ageing, neurodegradation, and cancerogenesis, given that inhibition of carnosinases might significantly prolong carnosine bioavailability and allow its further use in medicine. Herein, we explore the literature regarding carnosinases and present a short in silico analysis aimed at elucidating the possible recognition pattern between CN1 and its ligands.


Assuntos
Carnosina , Dipeptidases , Humanos , Carnosina/química , Carnosina/metabolismo , Antioxidantes , Dipeptidases/química , Dipeptidases/metabolismo , Envelhecimento
6.
ACS Infect Dis ; 9(11): 2141-2159, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37828912

RESUMO

The lipoteichoic acid (LTA) biosynthesis pathway has emerged as a promising antimicrobial therapeutic target. Previous studies identified the 1,3,4 oxadiazole compound 1771 as an LTA inhibitor with activity against Gram-positive pathogens. We have succeeded in making six 1771 derivatives and, through subsequent hit validation, identified the incorporation of a pentafluorosulfanyl substituent as central in enhancing activity. Our newly described derivative, compound 13, showed a 16- to 32-fold increase in activity compared to 1771 when tested against a cohort of multidrug-resistant Staphylococcus aureus strains while simultaneously exhibiting an improved toxicity profile against mammalian cells. Molecular techniques were employed in which the assumed target, lipoteichoic acid synthase (LtaS), was both deleted and overexpressed. Neither deletion nor overexpression of LtaS altered 1771 or compound 13 susceptibility; however, overexpression of LtaS increased the MIC of Congo red, a previously identified LtaS inhibitor. These data were further supported by comparing the docking poses of 1771 and derivatives in the LtaS active site, which indicated the possibility of an additional target(s). Finally, we show that both 1771 and compound 13 have activity that is independent of LtaS, extending to cover Gram-negative species if the outer membrane is first permeabilized, challenging the classification that these compounds are strict LtaS inhibitors.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/química , Mamíferos , Oxidiazóis/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
7.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240442

RESUMO

Tyrosinase is a copper-containing enzyme which is widely distributed in nature (e.g., bacteria, mammals, fungi) and involved in two consecutive steps of melanin biosynthesis. In humans, an excessive production of melanin can determine hyperpigmentation disorders as well as neurodegenerative processes in Parkinson's disease. The development of molecules able to inhibit the high activity of the enzyme remain a current topic in medicinal chemistry, because the inhibitors reported so far present several side effects. Heterocycle-bearing molecules are largely diffuse in this sense. Due to their importance as biologically active compounds, we decided to report a comprehensive review of synthetic tyrosinase inhibitors possessing heterocyclic moieties reported within the last five years. For the reader's convenience, we classified them as inhibitors of mushroom tyrosinase (Agaricus bisporus) and human tyrosinase.


Assuntos
Compostos Heterocíclicos , Monofenol Mono-Oxigenase , Animais , Humanos , Melaninas , Fungos , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/química , Mamíferos
8.
Mol Inform ; 42(7): e2300018, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37193650

RESUMO

The paper presents the VEGA Online web service, which includes a set of freely available tools deriving from the development of the VEGA suite of programs. In detail, the paper is focused on two tools: the VEGA Web Edition (WE) and the Score tool. The former is a versatile file format converter including relevant features for 2D/3D conversion, for surface mapping and for editing/preparing input files. The Score application allows rescoring docking poses and in particular includes the MLP Interactions Scores (MLPInS) for describing hydrophobic interactions. To the best of our knowledge, this web service is the only available resource by which one can calculate both the virtual log P of a given input molecule according to the MLP approach plus the corresponding MLP surface.


Assuntos
Modelos Moleculares , Software , Internet
9.
Front Pharmacol ; 14: 1148670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033661

RESUMO

Drug-induced cardiotoxicity represents one of the most critical safety concerns in the early stages of drug development. The blockade of the human ether-à-go-go-related potassium channel (hERG) is the most frequent cause of cardiotoxicity, as it is associated to long QT syndrome which can lead to fatal arrhythmias. Therefore, assessing hERG liability of new drugs candidates is crucial to avoid undesired cardiotoxic effects. In this scenario, computational approaches have emerged as useful tools for the development of predictive models able to identify potential hERG blockers. In the last years, several efforts have been addressed to generate ligand-based (LB) models due to the lack of experimental structural information about hERG channel. However, these methods rely on the structural features of the molecules used to generate the model and often fail in correctly predicting new chemical scaffolds. Recently, the 3D structure of hERG channel has been experimentally solved enabling the use of structure-based (SB) strategies which may overcome the limitations of the LB approaches. In this study, we compared the performances achieved by both LB and SB classifiers for hERG-related cardiotoxicity developed by using Random Forest algorithm and employing a training set containing 12789 hERG binders. The SB models were trained on a set of scoring functions computed by docking and rescoring calculations, while the LB classifiers were built on a set of physicochemical descriptors and fingerprints. Furthermore, models combining the LB and SB features were developed as well. All the generated models were internally validated by ten-fold cross-validation on the TS and further verified on an external test set. The former revealed that the best performance was achieved by the LB model, while the model combining the LB and the SB attributes displayed the best results when applied on the external test set highlighting the usefulness of the integration of LB and SB features in correctly predicting unseen molecules. Overall, our predictive models showed satisfactory performances providing new useful tools to filter out potential cardiotoxic drug candidates in the early phase of drug discovery.

10.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768428

RESUMO

The interaction of an equilibrium mixture of monomeric and aggregated cationic trans-5,15-bis(N-methylpyridinium-4-yl)-10,15-bis-diphenylporphine (t-H2Pagg) chloride salt with human serum albumin (HSA) has been investigated through UV/Vis absorption, fluorescence emission, circular dichroism and resonant light scattering techniques. The spectroscopic evidence reveals that both the monomeric t-H2Pagg and its aggregates bind instantaneously to HSA, leading to the formation of a tight adduct in which the porphyrin is encapsulated within the protein scaffold (S430) and to clusters of aggregated porphyrins in electrostatic interaction with the charged biomolecules. These latter species eventually interconvert into the final S430 species following pseudo-first-order kinetics. Molecular docking simulations have been performed to get some insights into the nature of the final adduct. Analogously to hemin bound to HSA, the obtained model supports favorable interactions of the porphyrin in the same 1B subdomain of the protein. Hydrophobic and van der Waals energy terms are the main contributions to the calculated ΔGbind value of -117.24 kcal/mol.


Assuntos
Porfirinas , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Simulação de Acoplamento Molecular , Porfirinas/química , Espectrometria de Fluorescência , Fenômenos Químicos , Dicroísmo Circular , Termodinâmica , Sítios de Ligação , Ligação Proteica
11.
Talanta ; 252: 123824, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027618

RESUMO

Mpro represents one of the most promising drug targets for SARS-Cov-2, as it plays a crucial role in the maturation of viral polyproteins into functional proteins. HTS methods are currently used to screen Mpro inhibitors, and rely on searching chemical databases and compound libraries, meaning that they only consider previously structurally clarified and isolated molecules. A great advancement in the hit identification strategy would be to set-up an approach aimed at exploring un-deconvoluted mixtures of compounds such as plant extracts. Hence, the aim of the present study is to set-up an analytical platform able to fish-out bioactive molecules from complex natural matrices even where there is no knowledge on the constituents. The proposed approach begins with a metabolomic step aimed at annotating the MW of the matrix constituents. A further metabolomic step is based on identifying those natural electrophilic compounds able to form a Michael adduct with thiols, a peculiar chemical feature of many Mpro inhibitors that covalently bind the catalytic Cys145 in the active site, thus stabilizing the complex. A final step consists of incubating recombinant Mpro with natural extracts and identifying compounds adducted to the residues within the Mpro active site by bottom-up proteomic analysis (nano-LC-HRMS). Data analysis is based on two complementary strategies: (i) a targeted search applied by setting the adducted moieties identified as Michael acceptors of Cys as variable modifications; (ii) an untargeted approach aimed at identifying the whole range of adducted peptides containing Cys145 on the basis of the characteristic b and y fragment ions independent of the adduct. The method was set-up and then successfully tested to fish-out bioactive compounds from the crude extract of Scutellaria baicalensis, a Chinese plant containing the catechol-like flavonoid baicalin and its corresponding aglycone baicalein which are well-established inhibitors of Mpro. Molecular dynamics (MD) simulations were carried out in order to explore the binding mode of baicalin and baicalein, within the SARS-CoV-2 Mpro active site, allowing a better understanding of the role of the nucleophilic residues (i.e. His41, Cys145, His163 and His164) in the protein-ligand recognition process.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Proteases 3C de Coronavírus , Peptídeo Hidrolases , Proteômica , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Simulação de Acoplamento Molecular , Misturas Complexas , Antivirais/farmacologia , Antivirais/química
12.
J Mol Struct ; 1278: None, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38312219

RESUMO

Amongst drug resistant Gram-positive bacteria, Staphylococcus aureus is a pathogen of great concern as it is the leading cause of life-threatening nosocomial and community acquired infections which are often associated with implanted medical devices. The biosynthesis of lipotheicoic acid (LTA) by S. aureus has been recognized as a promising antibacterial target, owing its critical role in the growth and survival of Gram-positive bacteria. Here we report for the first time the chemical synthesis and characterisation of an oxadiazole based compound (1771), previously described as an inhibitor of LTA biosynthesis by targeting Lta synthase enzyme (LtaS). To investigate its controversial mode of action, we also performed molecular docking studies, which indicated that 1771 behaves as a competitive inhibitor against LtaS. We also synthesised and evaluated the antimicrobial activity of 1771 metabolites which we have identified from its decomposition in mouse serum, proving that the biological activity was caused by intact 1771.

13.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499173

RESUMO

α-Synuclein (α-Syn) aggregates are implicated in Parkinson's disease (PD), so inhibitors of α-Syn aggregation have been intensively explored. It has been demonstrated that small molecules might be able to reduce α-Syn aggregation in fibrils, thus exerting neuroprotective effects in models of PD. To expand our knowledge about the structural requirements for blocking the recognition process into the oligomeric assembly of α-Syn aggregates, we performed a ligand-based virtual screening procedure using two well-known α-Syn aggregation inhibitors, SynuClean-D and ZPD-2, as query compounds. A collection of thirty-four compounds bearing distinct chemical functionalities and mutual chemical features were studied in a Th-T fluorescence test, thus identifying 5-(2,6-dinitro-4-(trifluoromethyl)benzyl)-1-methyl-1H-tetrazole (named MeSC-04) as a potent α-Syn amyloid formation inhibitor that demonstrated similar behavior when compared to SynuClean-D in the thioflavin-T-monitored kinetic assays, with both molecules reducing the number and size of amyloid fibrils, as evidenced by electron microscopy. Molecular modeling studies suggested the binding mode of MeSC-04 through the identification of putative druggable pockets on α-syn fibrils and a subsequent consensus docking methodology. Overall, this work could furnish new insights in the development of α-Syn amyloid inhibitors from synthetic sources.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Ligantes , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Proteínas Amiloidogênicas
14.
Cells ; 11(18)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139382

RESUMO

The Nerve Growth Factor (NGF) belongs to the neurothrophins protein family involved in the survival of neurons in the nervous system. The interaction of NGF with its high-affinity receptor TrkA mediates different cellular pathways related to Alzheimer's disease, pain, ocular dysfunction, and cancer. Therefore, targeting NGF-TrkA interaction represents a valuable strategy for the development of new therapeutic agents. In recent years, experimental studies have revealed that peptides belonging to the N-terminal domain of NGF are able to partly mimic the biological activity of the whole protein paving the way towards the development of small peptides that can selectively target specific signaling pathways. Hence, understanding the molecular basis of the interaction between the N-terminal segment of NGF and TrkA is fundamental for the rational design of new peptides mimicking the NGF N-terminal domain. In this study, molecular dynamics simulation, binding free energy calculations and per-residue energy decomposition analysis were combined in order to explore the molecular recognition pattern between the experimentally active NGF(1-14) peptide and TrkA. The results highlighted the importance of His4, Arg9 and Glu11 as crucial residues for the stabilization of NGF(1-14)-TrkA interaction, thus suggesting useful insights for the structure-based design of new therapeutic peptides able to modulate NGF-TrkA interaction.


Assuntos
Fator de Crescimento Neural , Receptor trkA , Simulação de Dinâmica Molecular , Fator de Crescimento Neural/metabolismo , Peptídeos , Receptor trkA/metabolismo , Transdução de Sinais
15.
ACS Chem Neurosci ; 13(5): 581-586, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179861

RESUMO

Parkinson's disease (PD) is characterized by the death of dopaminergic neurons. The common histopathological hallmark in PD patients is the formation of intracellular proteinaceous accumulations. The main constituent of these inclusions is alpha-synuclein (α-syn), an intrinsically disordered protein that in pathological conditions creates amyloid aggregates that lead to neurotoxicity and neurodegeneration. The main goal of our study was to optimize our previously identified α-syn aggregation inhibitors of 5-(4-pyridinyl)-1,2,4-triazole chemotype in terms of in vivo efficacy. Our efforts resulted in the identification of ethyl 2-((4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)acetate (15), which displayed the ability to prevent 1-methyl-4-phenyl-1,2,3,6-tetrahydropiridine-induced bradykinesia as well as to affect the levels of PD markers after the administration of the same neurotoxin. In addition to the in vivo evaluation, for the 5-(4-pyridinyl)-1,2,4-triazole-based compounds, we measured the prevention of the fibrillization process using light scattering and a ThT binding assay; these compounds have been shown to slightly reduce the α-syn aggregation.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Neurônios Dopaminérgicos/metabolismo , Humanos , Fármacos Neuroprotetores/química , Doença de Parkinson/metabolismo , Triazóis/metabolismo , Triazóis/farmacologia , alfa-Sinucleína/metabolismo
16.
Molecules ; 28(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36615285

RESUMO

A small series of hydrazonobenzenesulfonamides was designed, synthesized and studied for their human carbonic anhydrase (hCA) inhibitory activity. The synthesized compounds were evaluated against hCA I, II, IX and XII isoforms using acetazolamide (AAZ) as the standard inhibitor. Various hydrazonosulfonamide derivatives showed inhibitory activity at low nanomolar levels with selectivity against the cytosolic hCA II isoform, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. The most potent and selective hydrazones 8, 9, 10, 11, 19 and 24 were docked into isoforms I, II, IX and XII to better understand their activity and selectivity for the different CA isoforms.


Assuntos
Anidrase Carbônica I , Anidrases Carbônicas , Humanos , Anidrases Carbônicas/metabolismo , Relação Estrutura-Atividade , Inibidores da Anidrase Carbônica/farmacologia , Anidrase Carbônica IX , Antígenos de Neoplasias , Isoformas de Proteínas , Estrutura Molecular
17.
Bioorg Chem ; 116: 105388, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670331

RESUMO

Seasonal influenza A and B viruses represent a global concern. Antiviral drugs are crucial to treat severe influenza in high-risk patients and prevent virus spread in case of a pandemic. The emergence of viruses showing drug resistance, in particular for the recently licensed polymerase inhibitor baloxavir marboxil, drives the need for developing alternative antivirals. The endonuclease activity residing in the N-terminal domain of the polymerase acidic protein (PAN) is crucial for viral RNA synthesis and a validated target for drug design. Its function can be impaired by molecules bearing a metal-binding pharmacophore (MBP) able to coordinate the two divalent metal ions in the active site. In the present work, the 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one scaffold is explored for the inhibition of influenza virus PA endonuclease. The structure-activity relationship was analysed by modifying the substituents on the lipophilic moiety linked to the MBP. The new compounds exhibited nanomolar inhibitory activity in a FRET-based enzymatic assay, and a few compounds (15-17, 21) offered inhibition in the micromolar range, in a cell-based influenza virus polymerase assay. When investigated against a panel of PA-mutant forms, compound 17 was shown to retain full activity against the baloxavir-resistant I38T mutant. This was corroborated by docking studies providing insight into the binding mode of this novel class of PA inhibitors.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Isoindóis/farmacologia , Orthomyxoviridae/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Isoindóis/síntese química , Isoindóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Orthomyxoviridae/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade , Proteínas Virais/metabolismo
18.
ChemMedChem ; 16(19): 3083-3093, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34223697

RESUMO

There is a considerable attention for the development of inhibitors of tyrosinase (TYR) as therapeutic strategy for the treatment of hyperpigmentation disorders in humans. Continuing in our efforts to identify TYR inhibitors, we describe the design, synthesis and pharmacophore exploration of new small molecules structurally characterized by the presence of the 4-fluorobenzylpiperazine moiety as key pharmacophoric feature for the inhibition of TYR from Agaricus bisporus (AbTYR). Our investigations resulted in the discovery of the competitive inhibitor [4-(4-fluorobenzyl)piperazin-1-yl]-(3-chloro-2-nitro-phenyl)methanone 26 (IC50 =0.18 µM) that proved to be ∼100-fold more active than reference compound kojic acid (IC50 =17.76 µM). Notably, compound 26 exerted antimelanogenic effect on B16F10 cells in absence of cytotoxicity. Docking analysis suggested its binding mode into AbTYR and into modelled human TYR.


Assuntos
Inibidores Enzimáticos/farmacologia , Piperazina/farmacologia , Agaricus/enzimologia , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Monofenol Mono-Oxigenase , Piperazina/síntese química , Piperazina/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672244

RESUMO

The modulation of protein-protein interactions (PPIs) by small molecules represents a valuable strategy for pharmacological intervention in several human diseases. In this context, computer-aided drug discovery techniques offer useful resources to predict the network of interactions governing the recognition process between protein partners, thus furnishing relevant information for the design of novel PPI modulators. In this work, we focused our attention on the MUC1-CIN85 complex as a crucial PPI controlling cancer progression and metastasis. MUC1 is a transmembrane glycoprotein whose extracellular domain contains a variable number of tandem repeats (VNTRs) regions that are highly glycosylated in normal cells and under-glycosylated in cancer. The hypo-glycosylation fosters the exposure of the backbone to new interactions with other proteins, such as CIN85, that alter the intracellular signalling in tumour cells. Herein, different computational approaches were combined to investigate the molecular recognition pattern of MUC1-CIN85 PPI thus unveiling new structural information useful for the design of MUC1-CIN85 PPI inhibitors as potential anti-metastatic agents.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mucina-1/química , Mucina-1/metabolismo , Sítios de Ligação , Desenho de Fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Proto-Oncogênicas c-cbl/química , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Domínios de Homologia de src
20.
Molecules ; 26(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669763

RESUMO

Computer aided drug-design methods proved to be powerful tools for the identification of new therapeutic agents. We employed a structure-based workflow to identify new inhibitors targeting mTOR kinase at rapamycin binding site. By combining molecular dynamics (MD) simulation and pharmacophore modelling, a simplified structure-based pharmacophore hypothesis was built starting from the FKBP12-rapamycin-FRB ternary complex retrieved from RCSB Protein Data Bank (PDB code 1FAP). Then, the obtained model was used as filter to screen the ZINC biogenic compounds library, containing molecules derived from natural sources or natural-inspired compounds. The resulting hits were clustered according to their similarity; moreover, compounds showing the highest pharmacophore fit-score were chosen from each cluster. The selected molecules were subjected to docking studies to clarify their putative binding mode. The binding free energy of the obtained complexes was calculated by MM/GBSA method and the hits characterized by the lowest ΔGbind values were identified as potential mTOR inhibitors. Furthermore, the stability of the resulting complexes was studied by means of MD simulation which revealed that the selected compounds were able to form a stable ternary complex with FKBP12 and FRB domain, thus underlining their potential ability to inhibit mTOR with a rapamycin-like mechanism.


Assuntos
Simulação por Computador , Inibidores de Proteínas Quinases/farmacologia , Sirolimo/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Domínios Proteicos , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/metabolismo , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA