Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cancers (Basel) ; 14(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35565242

RESUMO

SF3B1 mutations are recurrent in cancer and result in aberrant splicing of a previously defined set of genes. Here, we investigated the fate of aberrant transcripts induced by mutant SF3B1 and the related functional consequences. We first demonstrate that mutant SF3B1 does not alter global nascent protein synthesis, suggesting target-dependent consequences. Polysome profiling revealed that 35% of aberrantly spliced transcripts are more translated than their corresponding canonically spliced transcripts. This mostly occurs in genes with enriched metabolic functions. Furthermore, LC-MS/MS analysis showed that mutant SF3B1 impacts the abundance of proteins involved in metabolism. Functional metabolic characterization revealed that mutant SF3B1 decreases mitochondrial respiration and promotes glycolysis to compensate for defective mitochondrial metabolism. Hence, mutant SF3B1 induces glycolysis dependency, which sensitizes cells to glycolysis inhibition. Overall, we provide evidence of the oncogenic involvement of mutant SF3B1 in uveal melanoma through a metabolic switch to glycolysis, revealing vulnerability to glycolysis inhibitors as a promising therapeutic strategy.

3.
Eur J Cancer ; 126: 93-103, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31927215

RESUMO

INTRODUCTION: Uveal melanoma (UM) is a rare and malignant intraocular tumour with a dismal prognosis. Despite a good control of the primary tumour by radiation or surgery, up to 50% of patients subsequently develop metastasis for which no efficient treatment is yet available. METHODOLOGY: To identify therapeutic opportunities, we performed an in vitro screen of 30 combinations of different inhibitors of pathways that are dysregulated in UM. Effects of drug combinations on viability, cell cycle and apoptosis were assessed in eight UM cell lines. The best synergistic combinations were further evaluated in six UM patient-derived xenografts (PDXs). RESULTS: We demonstrated that the Bcl-2/XL/W inhibitor (ABT263) sensitised the UM cell lines to other inhibitors, mainly to mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinase (MEK) and murine double minute 2 (MDM2) inhibitors. mTOR (RAD001) and MEK1/2 (trametinib) inhibitors were efficient as single agents, but their combinations with ABT263 displayed no synergism in UM PDXs. In contrast, the combination of ABT263 with MDM2 inhibitor (HDM201) showed a trend for a synergistic effect. CONCLUSION: We showed that inhibition of Bcl-2/XL/W sensitised the UM cell lines to other treatments encouraging investigation of the underlying mechanisms. Furthermore, our findings highlighted Bcl-2/XL/W and MDM2 co-inhibition as a promising strategy in UM.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Melanoma/tratamento farmacológico , Neoplasias Uveais/tratamento farmacológico , Compostos de Anilina/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Everolimo/administração & dosagem , Humanos , Imidazóis/administração & dosagem , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Piridonas/administração & dosagem , Pirimidinas/administração & dosagem , Pirimidinonas/administração & dosagem , Pirróis/administração & dosagem , Sulfonamidas/administração & dosagem , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
4.
Cancers (Basel) ; 11(7)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330784

RESUMO

Uveal Melanoma (UM) is a rare and malignant intraocular tumor with dismal prognosis. Despite the efficient control of the primary tumor by radiation or surgery, up to 50% of patients subsequently develop metastasis, mainly in the liver. Once the tumor has spread from the eye, the treatment is challenging and the median survival is only nine months. UM represents an intriguing model of oncogenesis that is characterized by a relatively homogeneous histopathological architecture and a low burden of genetic alterations, in contrast to other melanomas. UM is driven by recurrent activating mutations in Gαq pathway, which are associated with a second mutation in BRCA1 associated protein 1 (BAP1), splicing factor 3b subunit 1 (SF3B1), or eukaryotic translation initiation factor 1A X-linked (EIF1AX), occurring in an almost mutually exclusive manner. The monosomy of chromosome 3 is also a recurrent feature that is associated with high metastatic risk. These events driving UM oncogenesis have been thoroughly investigated over the last decade. However, no efficient related therapeutic strategies are yet available and the metastatic disease remains mostly incurable. Here, we review current knowledge regarding the molecular biology and the genetics of uveal melanoma and highlight the related therapeutic applications and perspectives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA