Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Clin Cancer Res ; 30(10): 2140-2159, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38376926

RESUMO

PURPOSE: The multi-kinase inhibitor (mKi) regorafenib has demonstrated efficacy in chemorefractory patients with metastatic colorectal cancer (mCRC). However, lack of predictive biomarkers and concerns over significant toxicities hamper the use of regorafenib in clinical practice. EXPERIMENTAL DESIGN: Serial liquid biopsies were obtained at baseline and monthly until disease progression in chemorefractory patients with mCRC treated with regorafenib in a phase II clinical trial (PROSPECT-R n = 40; NCT03010722) and in a multicentric validation cohort (n = 241). Tissue biopsies collected at baseline, after 2 months and at progression in the PROSPECT-R trial were used to establish patient-derived organoids (PDO) and for molecular analyses. MicroRNA profiling was performed on baseline bloods using the NanoString nCounter platform and results were validated by digital-droplet PCR and/or ISH in paired liquid and tissue biopsies. PDOs co-cultures and PDO-xenotransplants were generated for functional analyses. RESULTS: Large-scale microRNA expression analysis in longitudinal matched liquid and tissue biopsies from the PROSPECT-R trial identified MIR652-3p as a biomarker of clinical benefit to regorafenib. These findings were confirmed in an independent validation cohort and in a "control" group of 100 patients treated with lonsurf. Using ex vivo co-culture assays paired with single-cell RNA-sequencing of PDO established pre- and post-treatment, we modeled regorafenib response observed in vivo and in patients, and showed that MIR652-3p controls resistance to regorafenib by impairing regorafenib-induced lethal autophagy and by orchestrating the switch from neo-angiogenesis to vessel co-option. CONCLUSIONS: Our results identify MIR652-3p as a potential biomarker and as a driver of cell and non-cell-autonomous mechanisms of resistance to regorafenib.


Assuntos
Biomarcadores Tumorais , MicroRNA Circulante , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Compostos de Fenilureia , Piridinas , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/sangue , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Piridinas/uso terapêutico , Piridinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Animais , Feminino , Estudos Prospectivos , Masculino , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Idoso , Biópsia Líquida/métodos , Pessoa de Meia-Idade , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/sangue
2.
Stem Cell Reports ; 18(2): 570-584, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36669491

RESUMO

Adenomatous polyposis coli (APC) mutation is the hallmark of colorectal cancer (CRC), resulting in constitutive WNT activation. Despite decades of research, targeting WNT signaling in cancer remains challenging due to its on-target toxicity. We have previously shown that the deubiquitinating enzyme USP7 is a tumor-specific WNT activator in APC-truncated cells by deubiquitinating and stabilizing ß-catenin, but its role in gut tumorigenesis is unknown. Here, we show in vivo that deletion of Usp7 in Apc-truncated mice inhibits crypt hyperproliferation and intestinal tumor development. Loss of Usp7 prolongs the survival of the sporadic intestinal tumor model. Genetic deletion, but not pharmacological inhibition, of Usp7 in Apc+/- intestine induces colitis and enteritis. USP7 inhibitor treatment suppresses growth of patient-derived cancer organoids carrying APC truncations in vitro and in xenografts. Our findings provide direct evidence that USP7 inhibition may offer a safe and efficacious tumor-specific therapy for both sporadic and germline APC-mutated CRC.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias Colorretais , Humanos , Camundongos , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Polipose Adenomatosa do Colo/genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
3.
Cell Oncol (Dordr) ; 44(5): 1197-1206, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34462871

RESUMO

PURPOSE: We hypothesised that plasticity in signal transduction may be a mechanism of drug resistance and tested this hypothesis in the setting of cetuximab resistance in patients with KRAS/NRAS/BRAFV600 wild-type colorectal cancer (CRC). METHODS: A multiplex antibody-based platform was used to study simultaneous changes in signal transduction of 55 phospho-proteins in 12 KRAS/NRAS/BRAFV600 wild-type CRC cell lines (6 cetuximab sensitive versus 6 cetuximab resistant) following 1 and 4 h in vitro cetuximab exposure. We validated our results in CRC patient samples (n = 4) using ex vivo exposure to cetuximab in KRAS/NRAS/BRAFV600 cells that were immunomagnetically separated from the serous effusions of patients with known cetuximab resistance. RESULTS: Differences in levels of phospho-proteins in cetuximab sensitive and resistant cell lines included reductions in phospho-RPS6 and phospho-PRAS40 in cetuximab sensitive, but not cetuximab resistant cell lines at 1 and 4 h, respectively. In addition, phospho-AKT levels were found to be elevated in 3/4 patient samples following ex vivo incubation with cetuximab for 1 h. We further explored these findings by studying the effects of combinations of cetuximab and two PI3K pathway inhibitors in 3 cetuximab resistant cell lines. The addition of PI3K pathway inhibitors to cetuximab led to a significantly higher reduction in colony formation capacity compared to cetuximab alone. CONCLUSION: Our findings suggest activation of the PI3K pathway as a mechanism of cetuximab resistance in KRAS/NRAS/BRAFV600 wild-type CRC.


Assuntos
Cetuximab/farmacologia , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adulto , Idoso , Antineoplásicos Imunológicos/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Humanos , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Cell Death Differ ; 28(10): 2970-2982, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34226680

RESUMO

Junctional adhesion molecules (JAMs) play a critical role in cell permeability, polarity and migration. JAM-A, a key protein of the JAM family, is altered in a number of conditions including cancer; however, consequences of JAM-A dysregulation on carcinogenesis appear to be tissue dependent and organ dependent with significant implications for the use of JAM-A as a biomarker or therapeutic target. Here, we test the expression and prognostic role of JAM-A downregulation in primary and metastatic colorectal cancer (CRC) (n = 947). We show that JAM-A downregulation is observed in ~60% of CRC and correlates with poor outcome in four cohorts of stages II and III CRC (n = 1098). Using JAM-A knockdown, re-expression and rescue experiments in cell line monolayers, 3D spheroids, patient-derived organoids and xenotransplants, we demonstrate that JAM-A silencing promotes proliferation and migration in 2D and 3D cell models and increases tumour volume and metastases in vivo. Using gene-expression and proteomic analyses, we show that JAM-A downregulation results in the activation of ERK, AKT and ROCK pathways and leads to decreased bone morphogenetic protein 7 expression. We identify MIR21 upregulation as the cause of JAM-A downregulation and show that JAM-A rescue mitigates the effects of MIR21 overexpression on cancer phenotype. Our results identify a novel molecular loop involving MIR21 dysregulation, JAM-A silencing and activation of multiple oncogenic pathways in promoting invasiveness and metastasis in CRC.


Assuntos
Moléculas de Adesão Celular/metabolismo , Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Estudos de Casos e Controles , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Metástase Neoplásica , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética
5.
Nat Commun ; 12(1): 366, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446657

RESUMO

Many tumour cells show dependence on exogenous serine and dietary serine and glycine starvation can inhibit the growth of these cancers and extend survival in mice. However, numerous mechanisms promote resistance to this therapeutic approach, including enhanced expression of the de novo serine synthesis pathway (SSP) enzymes or activation of oncogenes that drive enhanced serine synthesis. Here we show that inhibition of PHGDH, the first step in the SSP, cooperates with serine and glycine depletion to inhibit one-carbon metabolism and cancer growth. In vitro, inhibition of PHGDH combined with serine starvation leads to a defect in global protein synthesis, which blocks the activation of an ATF-4 response and more broadly impacts the protective stress response to amino acid depletion. In vivo, the combination of diet and inhibitor shows therapeutic efficacy against tumours that are resistant to diet or drug alone, with evidence of reduced one-carbon availability. However, the defect in ATF4-response seen in vitro following complete depletion of available serine is not seen in mice, where dietary serine and glycine depletion and treatment with the PHGDH inhibitor lower but do not eliminate serine. Our results indicate that inhibition of PHGDH will augment the therapeutic efficacy of a serine depleted diet.


Assuntos
Glicina/metabolismo , Neoplasias/dietoterapia , Serina/biossíntese , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Glicina/análise , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Fosfoglicerato Desidrogenase/metabolismo , Serina/análise
6.
Cancer Discov ; 11(5): 1228-1247, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33328217

RESUMO

KRAS-mutant colorectal cancers are resistant to therapeutics, presenting a significant problem for ∼40% of cases. Rapalogs, which inhibit mTORC1 and thus protein synthesis, are significantly less potent in KRAS-mutant colorectal cancer. Using Kras-mutant mouse models and mouse- and patient-derived organoids, we demonstrate that KRAS with G12D mutation fundamentally rewires translation to increase both bulk and mRNA-specific translation initiation. This occurs via the MNK/eIF4E pathway culminating in sustained expression of c-MYC. By genetic and small-molecule targeting of this pathway, we acutely sensitize KRASG12D models to rapamycin via suppression of c-MYC. We show that 45% of colorectal cancers have high signaling through mTORC1 and the MNKs, with this signature correlating with a 3.5-year shorter cancer-specific survival in a subset of patients. This work provides a c-MYC-dependent cotargeting strategy with remarkable potency in multiple Kras-mutant mouse models and metastatic human organoids and identifies a patient population that may benefit from its clinical application. SIGNIFICANCE: KRAS mutation and elevated c-MYC are widespread in many tumors but remain predominantly untargetable. We find that mutant KRAS modulates translation, culminating in increased expression of c-MYC. We describe an effective strategy targeting mTORC1 and MNK in KRAS-mutant mouse and human models, pathways that are also commonly co-upregulated in colorectal cancer.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Neoplasias Colorretais/genética , Fator de Iniciação 4E em Eucariotos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Inibidores de MTOR/farmacologia , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Animais , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
7.
Gut ; 70(9): 1632-1641, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33199443

RESUMO

OBJECTIVE: Epidermal growth factor receptor (EGFR) inhibition may be effective in biomarker-selected populations of advanced gastro-oesophageal adenocarcinoma (aGEA) patients. Here, we tested the association between outcome and EGFR copy number (CN) in pretreatment tissue and plasma cell-free DNA (cfDNA) of patients enrolled in a randomised first-line phase III clinical trial of chemotherapy or chemotherapy plus the anti-EGFR monoclonal antibody panitumumab in aGEA (NCT00824785). DESIGN: EGFR CN by either fluorescence in situ hybridisation (n=114) or digital-droplet PCR in tissues (n=250) and plasma cfDNAs (n=354) was available for 474 (86%) patients in the intention-to-treat (ITT) population. Tissue and plasma low-pass whole-genome sequencing was used to screen for coamplifications in receptor tyrosine kinases. Interaction between chemotherapy and EGFR inhibitors was modelled in patient-derived organoids (PDOs) from aGEA patients. RESULTS: EGFR amplification in cfDNA correlated with poor survival in the ITT population and similar trends were observed when the analysis was conducted in tissue and plasma by treatment arm. EGFR inhibition in combination with chemotherapy did not correlate with improved survival, even in patients with significant EGFR CN gains. Addition of anti-EGFR inhibitors to the chemotherapy agent epirubicin in PDOs, resulted in a paradoxical increase in viability and accelerated progression through the cell cycle, associated with p21 and cyclin B1 downregulation and cyclin E1 upregulation, selectively in organoids from EGFR-amplified aGEA. CONCLUSION: EGFR CN can be accurately measured in tissue and liquid biopsies and may be used for the selection of aGEA patients. EGFR inhibitors may antagonise the antitumour effect of anthracyclines with important implications for the design of future combinatorial trials.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antibióticos Antineoplásicos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Epirubicina/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Neoplasias Esofágicas/tratamento farmacológico , Panitumumabe/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Adenocarcinoma/química , Idoso , Antibióticos Antineoplásicos/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Biomarcadores Tumorais/análise , Epirubicina/administração & dosagem , Receptores ErbB/análise , Neoplasias Esofágicas/química , Humanos , Masculino , Pessoa de Meia-Idade , Panitumumabe/administração & dosagem , Neoplasias Gástricas/química
8.
Nat Commun ; 11(1): 1923, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317663

RESUMO

Drug resistance mediated by clonal evolution is arguably the biggest problem in cancer therapy today. However, evolving resistance to one drug may come at a cost of decreased fecundity or increased sensitivity to another drug. These evolutionary trade-offs can be exploited using 'evolutionary steering' to control the tumour population and delay resistance. However, recapitulating cancer evolutionary dynamics experimentally remains challenging. Here, we present an approach for evolutionary steering based on a combination of single-cell barcoding, large populations of 108-109 cells grown without re-plating, longitudinal non-destructive monitoring of cancer clones, and mathematical modelling of tumour evolution. We demonstrate evolutionary steering in a lung cancer model, showing that it shifts the clonal composition of the tumour in our favour, leading to collateral sensitivity and proliferative costs. Genomic profiling revealed some of the mechanisms that drive evolved sensitivity. This approach allows modelling evolutionary steering strategies that can potentially control treatment resistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Evolução Molecular , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Evolução Clonal , Biologia Computacional , Simulação por Computador , Gefitinibe/farmacologia , Genótipo , Humanos , Neoplasias Pulmonares/patologia , Modelos Teóricos , Medicina Molecular , Piridonas/farmacologia , Pirimidinonas/farmacologia , Processos Estocásticos
9.
Hepatology ; 72(3): 982-996, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31879968

RESUMO

BACKGROUND AND AIMS: Changes in single microRNA (miRNA) expression have been associated with chemo-resistance in biliary tract cancers (BTCs). However, a global assessment of the dynamic role of the microRNome has never been performed to identify potential therapeutic targets that are functionally relevant in the BTC cell response to chemotherapy. APPROACH AND RESULTS: High-throughput screening (HTS) of 997 locked nucleic acid miRNA inhibitors was performed in six cholangiocarcinoma cell lines treated with cisplatin and gemcitabine (CG) seeking changes in cell viability. Validation experiments were performed with mirVana probes. MicroRNA and gene expression was assessed by TaqMan assay, RNA-sequencing, and in situ hybridization in four independent cohorts of human BTCs. Knockout of microRNA was achieved by CRISPR-CAS9 in CCLP cells (MIR1249KO) and tested for effects on chemotherapy sensitivity in vitro and in vivo. HTS revealed that MIR1249 inhibition enhanced chemotherapy sensitivity across all cell lines. MIR1249 expression was increased in 41% of cases in human BTCs. In validation experiments, MIR1249 inhibition did not alter cell viability in untreated or dimethyl sulfoxide-treated cells; however, it did increase the CG effect. MIR1249 expression was increased in CD133+ biliary cancer cells freshly isolated from the stem cell niche of human BTCs as well as in CD133+ chemo-resistant CCLP cells. MIR1249 modulated the chemotherapy-induced enrichment of CD133+ cells by controlling their clonal expansion through the Wnt-regulator FZD8. MIR1249KO cells had impaired expansion of the CD133+ subclone and its enrichment after chemotherapy, reduced expression of cancer stem cell markers, and increased chemosensitivity. MIR1249KO xenograft BTC models showed tumor shrinkage after exposure to weekly CG, whereas wild-type models showed only stable disease over treatment. CONCLUSIONS: MIR1249 mediates resistance to CG in BTCs and may be tested as a target for therapeutics.


Assuntos
Neoplasias do Sistema Biliar , Colangiocarcinoma , Cisplatino/farmacologia , Desoxicitidina/análogos & derivados , MicroRNAs , Antineoplásicos/farmacologia , Neoplasias do Sistema Biliar/tratamento farmacológico , Neoplasias do Sistema Biliar/metabolismo , Neoplasias do Sistema Biliar/patologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Desoxicitidina/farmacologia , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Ensaios de Triagem em Larga Escala/métodos , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
10.
Nat Cell Biol ; 21(11): 1413-1424, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31685988

RESUMO

Tumours depend on altered rates of protein synthesis for growth and survival, which suggests that mechanisms controlling mRNA translation may be exploitable for therapy. Here, we show that loss of APC, which occurs almost universally in colorectal tumours, strongly enhances the dependence on the translation initiation factor eIF2B5. Depletion of eIF2B5 induces an integrated stress response and enhances translation of MYC via an internal ribosomal entry site. This perturbs cellular amino acid and nucleotide pools, strains energy resources and causes MYC-dependent apoptosis. eIF2B5 limits MYC expression and prevents apoptosis in APC-deficient murine and patient-derived organoids and in APC-deficient murine intestinal epithelia in vivo. Conversely, the high MYC levels present in APC-deficient cells induce phosphorylation of eIF2α via the kinases GCN2 and PKR. Pharmacological inhibition of GCN2 phenocopies eIF2B5 depletion and has therapeutic efficacy in tumour organoids, which demonstrates that a negative MYC-eIF2α feedback loop constitutes a targetable vulnerability of colorectal tumours.


Assuntos
Neoplasias Colorretais/genética , Fator de Iniciação 2 em Eucariotos/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/antagonistas & inibidores , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Retroalimentação Fisiológica , Feminino , Células HCT116 , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Clin Cancer Res ; 25(13): 3830-3838, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30952636

RESUMO

PURPOSE: Anti-EGFR mAbs are effective in the treatment of metastatic colorectal cancer (mCRC) patients. RAS status and tumor location (sidedness) are predictive markers of patients' response to anti-EGFR mAbs. Recently, low miR-31-3p expression levels have been correlated with clinical benefit from the anti-EGFR mAb cetuximab. Here, we aimed to validate the predictive power of miR-31-3p in a prospective cohort of chemorefractory mCRC patients treated with single-agent anti-EGFR mAbs. EXPERIMENTAL DESIGN: miR-31-3p was tested by in situ hybridization (ISH) in 91 pretreatment core biopsies from metastatic deposits of 45 patients with mCRC. Sequential tissue biopsies obtained before treatment, at the time of partial response, and at disease progression were tested to monitor changes in miR-31-3p expression overtreatment. miR-31-3p expression, sidedness, and RAS status in pretreatment cell-free DNA were combined in multivariable regression models to assess the predictive value of each variable alone or in combination. RESULTS: Patients with low miR-31-3p expression in pretreatment biopsies showed better overall response rate, as well as better progression-free survival and overall survival, compared to those with high miR-31-3p expression. The prognostic effect of miR-31-3p was independent from age, gender, and sidedness. No significant changes in the expression of miR-31-3p were observed when sequential tissue biopsies were tested in long-term or poor responders to anti-EGFR mAbs. miR-31-3p scores were similar when pretreatment biopsies were compared with treatment-naïve archival tissues (often primary colorectal cancer). CONCLUSIONS: Our study validates the role of miR-31-3p as potential predictive biomarker of selection for anti-EGFR mAbs.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Expressão Gênica , MicroRNAs/genética , Idoso , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/mortalidade , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Prognóstico , Retratamento , Tomografia Computadorizada por Raios X , Resultado do Tratamento
13.
Oncogene ; 38(10): 1717-1733, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30353166

RESUMO

Despite showing clinical activity in BRAF-mutant melanoma, the MEK inhibitor (MEKi) trametinib has failed to show clinical benefit in KRAS-mutant colorectal cancer. To identify mechanisms of resistance to MEKi, we employed a pharmacogenomic analysis of MEKi-sensitive versus MEKi-resistant colorectal cancer cell lines. Strikingly, interferon- and inflammatory-related gene sets were enriched in cell lines exhibiting intrinsic and acquired resistance to MEK inhibition. The bromodomain inhibitor JQ1 suppressed interferon-stimulated gene (ISG) expression and in combination with MEK inhibitors displayed synergistic effects and induced apoptosis in MEKi-resistant colorectal cancer cell lines. ISG expression was confirmed in patient-derived organoid models, which displayed resistance to trametinib and were resensitized by JQ1 co-treatment. In in vivo models of colorectal cancer, combination treatment significantly suppressed tumor growth. Our findings provide a novel explanation for the limited response to MEK inhibitors in KRAS-mutant colorectal cancer, known for its inflammatory nature. Moreover, the high expression of ISGs was associated with significantly reduced survival of colorectal cancer patients. Excitingly, we have identified novel therapeutic opportunities to overcome intrinsic and acquired resistance to MEK inhibition in colorectal cancer.


Assuntos
Azepinas/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Interferons/metabolismo , Piridonas/administração & dosagem , Pirimidinonas/administração & dosagem , Triazóis/administração & dosagem , Animais , Azepinas/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mutação , Organoides/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridonas/farmacologia , Pirimidinonas/farmacologia , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Discov ; 8(10): 1270-1285, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30166348

RESUMO

Sequential profiling of plasma cell-free DNA (cfDNA) holds immense promise for early detection of patient progression. However, how to exploit the predictive power of cfDNA as a liquid biopsy in the clinic remains unclear. RAS pathway aberrations can be tracked in cfDNA to monitor resistance to anti-EGFR monoclonal antibodies in patients with metastatic colorectal cancer. In this prospective phase II clinical trial of single-agent cetuximab in RAS wild-type patients, we combine genomic profiling of serial cfDNA and matched sequential tissue biopsies with imaging and mathematical modeling of cancer evolution. We show that a significant proportion of patients defined as RAS wild-type based on diagnostic tissue analysis harbor aberrations in the RAS pathway in pretreatment cfDNA and, in fact, do not benefit from EGFR inhibition. We demonstrate that primary and acquired resistance to cetuximab are often of polyclonal nature, and these dynamics can be observed in tissue and plasma. Furthermore, evolutionary modeling combined with frequent serial sampling of cfDNA allows prediction of the expected time to treatment failure in individual patients. This study demonstrates how integrating frequently sampled longitudinal liquid biopsies with a mathematical framework of tumor evolution allows individualized quantitative forecasting of progression, providing novel opportunities for adaptive personalized therapies.Significance: Liquid biopsies capture spatial and temporal heterogeneity underpinning resistance to anti-EGFR monoclonal antibodies in colorectal cancer. Dense serial sampling is needed to predict the time to treatment failure and generate a window of opportunity for intervention. Cancer Discov; 8(10); 1270-85. ©2018 AACR. See related commentary by Siravegna and Corcoran, p. 1213 This article is highlighted in the In This Issue feature, p. 1195.


Assuntos
Neoplasias Colorretais/diagnóstico , Biópsia Líquida/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Ensaios Clínicos como Assunto , Evolução Clonal , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Tempo para o Tratamento , Falha de Tratamento
15.
Science ; 359(6378): 920-926, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29472484

RESUMO

Patient-derived organoids (PDOs) have recently emerged as robust preclinical models; however, their potential to predict clinical outcomes in patients has remained unclear. We report on a living biobank of PDOs from metastatic, heavily pretreated colorectal and gastroesophageal cancer patients recruited in phase 1/2 clinical trials. Phenotypic and genotypic profiling of PDOs showed a high degree of similarity to the original patient tumors. Molecular profiling of tumor organoids was matched to drug-screening results, suggesting that PDOs could complement existing approaches in defining cancer vulnerabilities and improving treatment responses. We compared responses to anticancer agents ex vivo in organoids and PDO-based orthotopic mouse tumor xenograft models with the responses of the patients in clinical trials. Our data suggest that PDOs can recapitulate patient responses in the clinic and could be implemented in personalized medicine programs.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Gastrointestinais/tratamento farmacológico , Organoides/efeitos dos fármacos , Medicina de Precisão/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/uso terapêutico , Neoplasias Gastrointestinais/patologia , Genômica , Humanos , Camundongos , Metástase Neoplásica , Organoides/metabolismo , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico
16.
Gastroenterology ; 154(4): 1066-1079.e5, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29113809

RESUMO

BACKGROUND & AIMS: Cholangiocarcinomas (CCA) are resistant to chemotherapy, so new therapeutic agents are needed. We performed a screen to identify small-molecule compounds that are active against CCAs. Levels of microRNA 21 (MIR21 or miRNA21) are increased in CCAs. We investigated whether miRNA21 mediates resistance of CCA cells and organoids to HSP90 inhibitors. METHODS: We performed a high-throughput screen of 484 small-molecule compounds to identify those that reduced viability of 6 human CCA cell lines. We tested the effects of HSP90 inhibitors on cells with disruption of the MIR21 gene, cells incubated with MIR21 inhibitors, and stable cell lines with inducible expression of MIR21. We obtained CCA biopsies from patients, cultured them as organoids (patient-derived organoids). We assessed their architecture, mutation and gene expression patterns, response to compounds in culture, and when grown as subcutaneous xenograft tumors in mice. RESULTS: Cells with IDH1 and PBRM1 mutations had the highest level of sensitivity to histone deacetylase inhibitors. HSP90 inhibitors were effective in all cell lines, irrespective of mutations. Sensitivity of cells to HSP90 inhibitors correlated inversely with baseline level of MIR21. Disruption of MIR21 increased cell sensitivity to HSP90 inhibitors. CCA cells that expressed transgenic MIR21 were more resistant to HSP90 inhibitors than cells transfected with control vectors; inactivation of MIR21 in these cells restored sensitivity to these agents. MIR21 was shown to target the DnaJ heat shock protein family (Hsp40) member B5 (DNAJB5). Transgenic expression of DNAJB5 in CCA cells that overexpressed MIR21 re-sensitized them to HSP90 inhibitors. Sensitivity of patient-derived organoids to HSP90 inhibitors, in culture and when grown as xenograft tumors in mice, depended on expression of miRNA21. CONCLUSIONS: miRNA21 appears to mediate resistance of CCA cells to HSP90 inhibitors by reducing levels of DNAJB5. HSP90 inhibitors might be developed for the treatment of CCA and miRNA21 might be a marker of sensitivity to these agents.


Assuntos
Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , MicroRNAs/metabolismo , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Proteínas de Ligação a DNA , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Mutação , Proteínas Nucleares/genética , Organoides , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição/genética , Transfecção , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell Rep ; 10(6): 944-956, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25683717

RESUMO

A critical aspect of mammalian gametogenesis is the reprogramming of genomic DNA methylation. The catalytically inactive adaptor Dnmt3L is essential to ensuring this occurs correctly, but the mechanism by which it functions is unclear. Using gene targeting to engineer a single-amino-acid mutation, we show that the Dnmt3L histone H3 binding domain (ADD) is necessary for spermatogenesis. Genome-wide single-base-resolution DNA methylome analysis of mutant germ cells revealed overall reductions in CG methylation at repetitive sequences and non-promoter CpG islands. Strikingly, we also observe an even more severe loss of non-CG methylation, suggesting an unexpected role for the ADD in this process. These epigenetic deficiencies were coupled with defects in spermatogonia, with mutant cells displaying marked changes in gene expression and reactivation of retrotransposons. Our results demonstrate that the Dnmt3L ADD is necessary for Dnmt3L function and full reproductive fitness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA