Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 226: 290-313, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33241811

RESUMO

This study aims to critically evaluate the source apportionment of fine particles by multiple receptor modelling approaches, including carbon mass balance modelling of filter-based radiocarbon (14C) data, Chemical Mass Balance (CMB) and Positive Matrix Factorization (PMF) analysis on filter-based chemical speciation data, and PMF analysis on Aerosol Mass Spectrometer (AMS-PMF) or Aerosol Chemical Speciation Monitor (ACSM-PMF) data. These data were collected as part of the APHH-Beijing (Atmospheric Pollution and Human Health in a Chinese Megacity) field observation campaigns from 10th November to 12th December in winter 2016 and from 22nd May to 24th June in summer 2017. 14C analysis revealed the predominant contribution of fossil fuel combustion to carbonaceous aerosols in winter compared with non-fossil fuel sources, which is supported by the results from other methods. An extended Gelencsér (EG) method incorporating 14C data, as well as the CMB and AMS/ACSM-PMF methods, generated a consistent source apportionment for fossil fuel related primary organic carbon. Coal combustion, traffic and biomass burning POC were comparable for CMB and AMS/ACSM-PMF. There are uncertainties in the EG method when estimating biomass burning and cooking OC. The POC from cooking estimated by different methods was poorly correlated, suggesting a large uncertainty when differentiating this source type. The PM2.5 source apportionment results varied between different methods. Through a comparison and correlation analysis of CMB, PMF and AMS/ACSM-PMF, the CMB method appears to give the most complete and representative source apportionment of Beijing aerosols. Based upon the CMB results, fine aerosols in Beijing were mainly secondary inorganic ion formation, secondary organic aerosol formation, primary coal combustion and from biomass burning emissions.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , Monitoramento Ambiental , Humanos , Material Particulado/análise
2.
Nature ; 587(7834): 414-419, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208962

RESUMO

Particulate matter is a component of ambient air pollution that has been linked to millions of annual premature deaths globally1-3. Assessments of the chronic and acute effects of particulate matter on human health tend to be based on mass concentration, with particle size and composition also thought to play a part4. Oxidative potential has been suggested to be one of the many possible drivers of the acute health effects of particulate matter, but the link remains uncertain5-8. Studies investigating the particulate-matter components that manifest an oxidative activity have yielded conflicting results7. In consequence, there is still much to be learned about the sources of particulate matter that may control the oxidative potential concentration7. Here we use field observations and air-quality modelling to quantify the major primary and secondary sources of particulate matter and of oxidative potential in Europe. We find that secondary inorganic components, crustal material and secondary biogenic organic aerosols control the mass concentration of particulate matter. By contrast, oxidative potential concentration is associated mostly with anthropogenic sources, in particular with fine-mode secondary organic aerosols largely from residential biomass burning and coarse-mode metals from vehicular non-exhaust emissions. Our results suggest that mitigation strategies aimed at reducing the mass concentrations of particulate matter alone may not reduce the oxidative potential concentration. If the oxidative potential can be linked to major health impacts, it may be more effective to control specific sources of particulate matter rather than overall particulate mass.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Poluição do Ar/análise , Material Particulado/análise , Material Particulado/química , Brônquios/citologia , Células Cultivadas , Cidades , Células Epiteliais , Europa (Continente) , Humanos , Modelos Teóricos , Oxirredução , População Rural , População Urbana
3.
PLoS One ; 15(11): e0233425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33206642

RESUMO

Ambient air pollution is one of the leading five health risks worldwide. One of the most harmful air pollutants is particulate matter (PM), which has different physical characteristics (particle size and number, surface area and morphology) and a highly complex and variable chemical composition. Our goal was first to comparatively assess the effects of exposure to PM regarding cytotoxicity, release of pro-inflammatory mediators and gene expression in human bronchial epithelia (HBE) reflecting normal and compromised health status. Second, we aimed at evaluating the impact of various PM components from anthropogenic and biogenic sources on the cellular responses. Air-liquid interface (ALI) cultures of fully differentiated HBE derived from normal and cystic fibrosis (CF) donor lungs were exposed at the apical cell surface to water-soluble PM filter extracts for 4 h. The particle dose deposited on cells was 0.9-2.5 and 8.8-25.4 µg per cm2 of cell culture area for low and high PM doses, respectively. Both normal and CF HBE show a clear dose-response relationship with increasing cytotoxicity at higher PM concentrations. The concurrently enhanced release of pro-inflammatory mediators at higher PM exposure levels links cytotoxicity to inflammatory processes. Further, the PM exposure deregulates genes involved in oxidative stress and inflammatory pathways leading to an imbalance of the antioxidant system. Moreover, we identify compromised defense against PM in CF epithelia promoting exacerbation and aggravation of disease. We also demonstrate that the adverse health outcome induced by PM exposure in normal and particularly in susceptible bronchial epithelia is magnified by anthropogenic PM components. Thus, including health-relevant PM components in regulatory guidelines will result in substantial human health benefits and improve protection of the vulnerable population.


Assuntos
Aerossóis/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Fibrose Cística/complicações , Células Epiteliais/patologia , Inflamação/etiologia , Estresse Oxidativo , Mucosa Respiratória/patologia , Células Cultivadas , Humanos , Inflamação/patologia , Mediadores da Inflamação , Tamanho da Partícula , Material Particulado/efeitos adversos
4.
Environ Sci Technol ; 53(21): 12565-12575, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31566955

RESUMO

Ice cores are climate archives suitable for the reconstruction of past atmospheric composition changes. Ice core analysis provides valuable insight into the chemical nature of aerosols and enables constraining emission inventories of primary emissions and of gas-phase precursors. Changes in the emissions of volatile organic compounds (VOCs) can affect formation rates and mechanisms as well as chemical composition of aerosols during the preindustrial era, key information for understanding aerosol climate effects. Here, we present an analytical method for the reconstruction of organic aerosol composition preserved in glacier ice cores. A solid-phase-extraction method, optimized toward oxidation products of biogenic VOCs, provides an enrichment factor of ∼200 and quantitative recovery for compounds of interest. We applied the preconcentration method on ice core samples from the high-alpine Fiescherhorn glacier (Swiss Alps), and used high-performance liquid chromatography coupled to high-resolution mass spectrometry as a sensitive detection method. We describe a nontarget analysis that screens for organic molecules in the ice core samples. We evaluate the atmospheric origin of the detected compounds in the ice by molecular-resolved comparison with airborne particulate matter samples from the nearby high-alpine research station Jungfraujoch. The presented method is able to shed light upon the history of the evolution of organic aerosol composition in the anthropocene, a research field in paleoclimatology with considerable potential.


Assuntos
Camada de Gelo , Compostos Orgânicos Voláteis , Aerossóis , Espectrometria de Massas , Material Particulado
5.
Environ Sci Technol ; 50(19): 10494-10503, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27626106

RESUMO

Aerodyne aerosol mass spectrometer (AMS) and Aerodyne aerosol chemical speciation monitor (ACSM) mass spectra are widely used to quantify organic aerosol (OA) elemental composition, oxidation state, and major environmental sources. The OA CO2+ fragment is among the most important measurements for such analyses. Here, we show that a non-OA CO2+ signal can arise from reactions on the particle vaporizer, ion chamber, or both, induced by thermal decomposition products of inorganic salts. In our tests (eight instruments, n = 29), ammonium nitrate (NH4NO3) causes a median CO2+ interference signal of +3.4% relative to nitrate. This interference is highly variable between instruments and with measurement history (percentiles P10-90 = +0.4 to +10.2%). Other semi-refractory nitrate salts showed 2-10 times enhanced interference compared to that of NH4NO3, while the ammonium sulfate ((NH4)2SO4) induced interference was 3-10 times lower. Propagation of the CO2+ interference to other ions during standard AMS and ACSM data analysis affects the calculated OA mass, mass spectra, molecular oxygen-to-carbon ratio (O/C), and f44. The resulting bias may be trivial for most ambient data sets but can be significant for aerosol with higher inorganic fractions (>50%), e.g., for low ambient temperatures, or laboratory experiments. The large variation between instruments makes it imperative to regularly quantify this effect on individual AMS and ACSM systems.


Assuntos
Aerossóis , Espectrometria de Massas , Carbono , Cloreto de Sódio , Cloreto de Sódio na Dieta
8.
Angiology ; 66(4): 304-18, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24778424

RESUMO

The Mediterranean Diet (MedDiet) has been reported to be protective against the occurrence of several diseases. Increasing evidence suggests that the MedDiet could counter diseases associated with chronic inflammation, including metabolic syndrome, atherosclerosis, cancer, diabetes, obesity, pulmonary diseases, and cognition disorders. Adoption of a MedDiet was associated with beneficial effects on the secretion of anti-inflammatory cytokines, antioxidant cellular and circulating biomarkers as well as with regulation of gene polymorphisms involved in the atherosclerotic process. The MedDiet has been considered for the prevention of cardiovascular and other chronic degenerative diseases focusing on the impact of a holistic dietary approach rather than on single nutrients. Epidemiological dietary scores measuring adherence to a MedDiet have been developed. This narrative review considers the results of up-to-date clinical studies (with a focus on the last 5 years) that evaluated the effectiveness of the MedDiet in reducing the prevalence of chronic and degenerative diseases.


Assuntos
Doença Crônica/prevenção & controle , Dieta Mediterrânea , Comportamento de Redução do Risco , Doença Crônica/epidemiologia , Comportamento Alimentar , Comportamentos Relacionados com a Saúde , Humanos , Estado Nutricional , Serviços Preventivos de Saúde , Prognóstico , Fatores de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA