Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; : e14197, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825882

RESUMO

Aortic stiffening is an inevitable manifestation of chronological aging, yet the mechano-molecular programs that orchestrate region- and layer-specific adaptations along the length and through the wall of the aorta are incompletely defined. Here, we show that the decline in passive cyclic distensibility is more pronounced in the ascending thoracic aorta (ATA) compared to distal segments of the aorta and that collagen content increases in both the medial and adventitial compartments of the ATA during aging. The single-cell RNA sequencing of aged ATA tissues reveals altered cellular senescence, remodeling, and inflammatory responses accompanied by enrichment of T-lymphocytes and rarefaction of vascular smooth muscle cells, compared to young samples. T lymphocyte clusters accumulate in the adventitia, while the activation of mechanosensitive Piezo-1 enhances vasoconstriction and contributes to the overall functional decline of ATA tissues. These results portray the immuno-mechanical aging of the ATA as a process that culminates in a stiffer conduit permissive to the accrual of multi-gerogenic signals priming to disease development.

2.
Nutrition ; 111: 112055, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182400

RESUMO

OBJECTIVES: Obesity is characterized by local and systemic low-grade inflammatory responses. Adipose tissue macrophages (ATM) play decisive roles in inflammation, insulin signaling, and various metabolic dysfunctions. Diets enriched with ω-3 polyunsaturated fatty acids (PUFAs) have been shown to improve health and mitigate pathologic conditions. However, the effects of ω-3 PUFA on adipose tissue inflammation, ATM number, and phenotype are poorly defined in human obesity. The aim of this study was to examine differences in expression of metabolic-inflammatory markers in omental, mesenteric, and subcutaneous fat depots of obese women supplemented with ω-3 PUFAs for 4 wk compared with a low-calorie diet before bariatric surgery. METHODS: In a randomized controlled trial, inflammatory markers in the abdominal adipose tissue and the systemic response in obese women were studied. Patients were treated with a 2-wk low-calorie diet (LCD) or a 4-wk ω-3 PUFA-enriched diet (920 mg eicosapentaenoic acid, 760 mg docosahexaenoic acid daily) before laparoscopic bypass surgery. Omental, mesenteric, and subcutaneous adipose tissue biopsies were collected during surgery and analyzed for quantity and phenotype of ATMs, and profiled for adipokines, cytokines, and signal transduction molecules. RESULTS: The chronic inflammatory state characterized by ATM markers was mostly improved by ω-3 PUFAs in visceral adipose tissue. We observed a decreased expression of CD45, CCL2, and CD68, indicating a lower inflammatory state. In patients with type 2 diabetes, ω-3 PUFAs lowered the expression of Netrin-1. CONCLUSIONS: Compared with an LCD, a diet enriched with ω-3 PUFAs influences the inflammatory state in different adipose tissue depots, by affecting markers of adipose tissue inflammation, macrophage phenotype, and retention. However, this was not reflected in clinical parameters such as insulin resistance and inflammatory cytokines. Subcutaneous adipose tissue and visceral adipose tissue have different responses to an LCD or a ω-3 PUFA-enriched diet. The presence of diabetes modifies the expression of inflammatory markers.


Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos Ômega-3 , Obesidade Mórbida , Humanos , Feminino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade Mórbida/cirurgia , Tecido Adiposo/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Inflamação/metabolismo , Suplementos Nutricionais , Citocinas/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 42(10): 1244-1253, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36073351

RESUMO

BACKGROUND: MT1-MMP (membrane-type 1 matrix metalloproteinase, MMP-14) is a transmembrane-anchored protein with an extracellular proteinase domain and a cytoplasmic tail devoid of proteolytic functions but capable of mediating intracellular signaling that regulates tissue homeostasis. MT1-MMP extracellular proteolytic activity has been shown to regulate pathological remodeling in aortic aneurysm and atherosclerosis. However, the role of the nonproteolytic intracellular domain of MT1-MMP in vascular remodeling in abdominal aortic aneurysms (AAA) is unknown. METHODS: We generated a mutant mouse that harbors a point mutation (Y573D) in the MT1-MMP cytoplasmic domain that abrogates the MT1-MMP signaling function without affecting its proteolytic activity. These mice and their control wild-type littermates were subjected to experimental AAA modeled by angiotensin II infusion combined with PCSK9 (proprotein convertase subtilisin/kexin type 9) overexpression and high-cholesterol feeding. RESULTS: The mutant mice developed more severe AAA than the control mice, with concomitant generation of intraaneurysmal atherosclerotic lesions and dramatically increased macrophage infiltration and elastin degradation. Aortic lesion-associated and bone marrow-derived macrophages from the mutant mice exhibited an enhanced inflammatory state and expressed elevated levels of proinflammatory Netrin-1, a protein previously demonstrated to promote both atherosclerosis and AAA. CONCLUSIONS: Our findings show that the cytoplasmic domain of MT1-MMP safeguards from AAA and atherosclerotic plaque development through a proteolysis-independent signaling mechanism associated with Netrin-1 expression. This unexpected function of MT1-MMP unveils a novel mechanism of synchronous onset of AAA and atherogenesis and highlights its importance in the control of vascular wall homeostasis.


Assuntos
Aneurisma da Aorta Abdominal , Aterosclerose , Angiotensina II , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aterosclerose/genética , Colesterol , Elastina/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Netrina-1 , Pró-Proteína Convertase 9 , Subtilisinas
4.
Front Cardiovasc Med ; 9: 1021934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698932

RESUMO

Cumulative evidence has shown that mechanical and frictional forces exert distinct effects in the multi-cellular aortic layers and play a significant role in the development of abdominal aortic aneurysms (AAA). These mechanical cues collectively trigger signaling cascades relying on mechanosensory cellular hubs that regulate vascular remodeling programs leading to the exaggerated degradation of the extracellular matrix (ECM), culminating in lethal aortic rupture. In this review, we provide an update and summarize the current understanding of the mechanotransduction networks in different cell types during AAA development. We focus on different mechanosensors and stressors that accumulate in the AAA sac and the mechanotransduction cascades that contribute to inflammation, oxidative stress, remodeling, and ECM degradation. We provide perspectives on manipulating this mechano-machinery as a new direction for future research in AAA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA