Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 229-230: 106539, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33493873

RESUMO

Sequential extraction tests were used to study partitioning of U in the bottom sediments of two reservoirs that have been used for the temporary storage of nuclear waste at the "Mining and Chemical Combine" (Zheleznogorsk, Krasnoyarsk region, Russia). Various sequential extraction protocols were applied to the bottom sediment samples and the results compared with those obtained for laboratory-prepared simulated samples with different speciation and partitioning, e.g., U(VI) sorbed onto various inorganic minerals and organic matter, as well as uranium oxides. The distributions of uranium in fractions extracted from simulated and actual contaminated samples were compared to shed light on the speciation of U in the bottom sediments. X-ray absorption spectroscopy, X-ray diffraction, and scanning electron microscopy were also used to analyze the partitioning of U in contaminated sediments. We also compared the results obtained using the spectroscopic and microscopic techniques, as well as sequential extraction.


Assuntos
Monitoramento de Radiação , Urânio , Poluentes Radioativos da Água , Sedimentos Geológicos , Federação Russa , Urânio/análise
2.
Front Chem ; 8: 630, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903456

RESUMO

The row of 15 chemical elements from Ac to Lr with atomic numbers from 89 to 103 are known as the actinides, which are all radioactive. Among them, uranium and plutonium are the most important as they are used in the nuclear fuel cycle and nuclear weapon production. Since the beginning of national nuclear programs and nuclear tests, many radioactively contaminated nuclear legacy sites, have been formed. This mini review covers the latest experimental, modeling, and case studies of plutonium and uranium migration in the environment, including the speciation of these elements and the chemical reactions that control their migration pathways.

3.
Environ Sci Technol ; 49(11): 6474-84, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25815708

RESUMO

The speciation of U and Pu in soil and concrete from Rocky Flats and in particles from soils from Chernobyl, Hanford, Los Alamos, and McGuire Air Force Base and bottom sediments from Mayak was determined by a combination of X-ray absorption fine structure (XAFS) spectroscopy and X-ray fluorescence (XRF) element maps. These experiments identify four types of speciation that sometimes may and other times do not exhibit an association with the source terms and histories of these samples: relatively well ordered PuO2+x and UO2+x that had equilibrated with O2 and H2O under both ambient conditions and in fires or explosions; instances of small, isolated particles of U as UO2+x, U3O8, and U(VI) species coexisting in close proximity after decades in the environment; alteration phases of uranyl with other elements including ones that would not have come from soils; and mononuclear Pu-O species and novel PuO2+x-type compounds incorporating additional elements that may have occurred because the Pu was exposed to extreme chemical conditions such as acidic solutions released directly into soil or concrete. Our results therefore directly demonstrate instances of novel complexity in the Å and µm-scale chemical speciation and reactivity of U and Pu in their initial formation and after environmental exposure as well as occasions of unexpected behavior in the reaction pathways over short geological but significant sociological times. They also show that incorporating the actual disposal and site conditions and resultant novel materials such as those reported here may be necessary to develop the most accurate predictive models for Pu and U in the environment.


Assuntos
Plutônio/análise , Poluentes Radioativos do Solo/análise , Urânio/análise , Acidente Nuclear de Chernobyl , Colorado , New Jersey , New Mexico , Plutônio/química , Federação Russa , Espectrometria por Raios X , Ucrânia , Urânio/química , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA