Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chem Biol Interact ; : 111064, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768772

RESUMO

Flavonoids are considered as health-protecting food constituents. The testing of their biological effects is however hampered by their low absorption and complex metabolism. In order to investigate the direct effect(s) of unmetabolized flavonoid, a preparation in a biologically friendly solvent for intravenous administration is needed. Isorhamnetin, a natural flavonoid and a human metabolite of the most frequently tested flavonoid quercetin, has very low water solubility (< 3.5 µg/mL). The aim of this study was to improve its solubility to enable intravenous administration and to test its pharmacokinetics in an animal model. By using polyvinylpyrrolidone (PVP10) and benzalkonium chloride, we were able to improve the solubility approximately 600 times to 2.1 mg/mL. This solution was then administered intravenously at a dose of 0.5 mg/kg of isorhamnetin to rats and its pharmacokinetics was analyzed. Pharmacokinetics of isorhamnetin corresponded to two compartmental model with a rapid initial distribution phase (t1/2α: 5.7 ± 4.3 min) and a slower elimination phase (t1/2ß: 61 ± 47.5 min). Two sulfate metabolites were also identified. PVP10 and benzalkonium did not modify the properties of isorhamnetin (iron chelation and reduction, and cell penetration) substantially. In conclusion, the novel preparation reported in this study is suitable for future testing of isorhamnetin effects under in vivo conditions.

2.
J Sep Sci ; 46(18): e2300431, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37568246

RESUMO

Within this review, we thoroughly explored supercritical fluid chromatography (SFC) columns used across > 3000 papers published from the first study carried out under SFC conditions in 1962 to the end of 2022. We focused on the open tubular capillary, packed capillary, and packed columns, their chemistries, dimensions, and trends in used stationary phases with correlation to their specific interactions, advantages, drawbacks, used instrumentation, and application field. Since the 1990s, packed columns with liquid chromatography and SFC-dedicated stationary phases for chiral and achiral separation are predominantly used. These stationary phases are based on silica support modified with a wide range of chemical moieties. Moreover, numerous unconventional stationary phases were evaluated, including porous graphitic carbon, titania, zirconia, alumina, liquid crystals, and ionic liquids. The applications of unconventional stationary phases are described in detail as they bring essential findings required for further development of the supercritical fluid chromatography technique.

3.
Plant Methods ; 18(1): 87, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739596

RESUMO

BACKGROUND: Quercetin is one of the most important bioflavonoids having positive effects on the biological processes and human health. Typically, it is extracted from plant matrices using conventional methods such as maceration, sonication, infusion, and Soxhlet extraction with high solvent consumption. Our study aimed to optimize the environmentally friendly carbon dioxide-based method for the extraction of quercetin from quince fruit with an emphasis on extraction yield, repeatability, and short extraction time. RESULTS: A two-step design of experiments was used for the optimization of the key parameters affecting physicochemical properties, including CO2/co-solvent ratio, co-solvent type, temperature, and pressure. Finally, gas expanded liquid combining CO2/ethanol/H2O in a ratio of 10/81/9 (v/v/v) provided the best extraction yield. Extraction temperature 66 °C and pressure 22.3 MPa were the most suitable conditions after careful optimization, although both parameters did not significantly affect the process. It was confirmed by experiments in various pressure and temperature conditions and statistical comparison of obtained data. The optimized extraction procedure at a flow rate of 3 mL/min took 30 min. The repeatability of the extraction method exhibited an RSD of 20.8%. CONCLUSIONS: The optimized procedure enabled very fast extraction in 30 min using environmentally friendly solvents and it was successfully applied to 16 different plant samples, including 14 bulbs and 2 fruits from South Africa. The quercetin content in extracts was quantified using ultra-high performance liquid chromatography (UHPLC) with tandem mass spectrometry. UHPLC hyphenated with high-resolution mass spectrometry was used to confirm chemical identity of quercetin in the analyzed samples. We quantified quercetin in 11 samples of all 16 tested plants. The quercetin was found in Agapanthus praecox from the Amaryllidaceae family and its presence in this specie was reported for the first time.

4.
J Sep Sci ; 44(9): 1893-1903, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33650236

RESUMO

Sensitive analysis of very low-molecular weight metabolites using liquid chromatography with quadrupole-time-of-flight mass spectrometry is challenging due to the high losses of ions in a time-of-flight analyzer. Improvement in sensitivity for these analytes via the optimization of advanced parameters, including quadrupole profile, ion guide parameters, and duty cycle, has been achieved. The optimization of the method was carried out using a large spectrum of structurally different compounds including (iso)flavonoids and their known metabolites. These compounds can be categorized into two major groups, that is, compounds with (iso)flavonoid core and low-molecular weight phenolics. The optimization of the duty cycle enabled up to a 15-fold increase in analyte responses while the contribution of tuning ion optics and quadrupole profile was negligible. The limits of quantifications of our new method were assessed using both standard solutions and rat plasma. They were decreased at least 10 times for several low-molecular weight phenolics enabling measurement of their concentrations in a range of 1-50 ng/mL in rat plasma after protein precipitation. Concurrently, the limits of quantifications for compounds with (iso)flavonoid core did not increase distinctly allowing their detection in a range of 0.5-10 ng/mL. The new method was used for the targeting of phenolics in biological samples from pharmacokinetics experiments.


Assuntos
Fenóis/sangue , Animais , Cromatografia Líquida de Alta Pressão , Masculino , Espectrometria de Massas , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA