Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352567

RESUMO

Bacterial pathogens that invade the eukaryotic cytosol are distinctive tools for fighting cancer, as they preferentially target tumors and can deliver cancer antigens to MHC-I. Cytosolic bacterial pathogens have undergone extensive preclinical development and human clinical trials, yet the molecular mechanisms by which they are detected by innate immunity in tumors is unclear. We report that intratumoral delivery of phylogenetically distinct cytosolic pathogens, including Listeria, Rickettsia, and Burkholderia species, elicited anti-tumor responses in established, poorly immunogenic melanoma and lymphoma in mice. We were surprised to observe that although the bacteria required entry to the cytosol, the anti-tumor responses were largely independent of the cytosolic sensors cGAS/STING and instead required TLR signaling. Combining pathogens with TLR agonists did not enhance anti-tumor efficacy, while combinations with STING agonists elicited profound, synergistic anti-tumor effects with complete responses in >80% of mice after a single dose. Small molecule TLR agonists also synergistically enhanced the anti-tumor activity of STING agonists. The anti-tumor effects were diminished in Rag2-deficient mice and upon CD8 T cell depletion. Mice cured from combination therapy developed immunity to cancer rechallenge that was superior to STING agonist monotherapy. Together, these data provide a framework for enhancing the efficacy of microbial cancer therapies and small molecule innate immune agonists, via the co-activation of STING and TLRs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA