Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 105(1): 110-117, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27557993

RESUMO

This study sought to characterize the composition and morphology of acellular mineralization occurring in thermally and chemically gelable hydrogels comprising copolymers of hydrophobic N-isopropylacrylamide as a function of hydrogel hydrophobicity and culture medium formulation. The deposition of calcium phosphate (CaP) mineral was hypothesized to occur with increasing hydrogel hydrophobicity and presence of serum proteins in the culture medium. Two hydrogel compositions with a solid content of 15 and 20 wt % were examined in serum-containing and nonserum-containing media for 0, 14, 28, and 56 days. Using biochemical assays, calcium, but not phosphate content, was found to significantly increase over time in hydrophobic hydrogels soaked in cell culture medium with fetal bovine serum. Significant increases in the calcium to phosphate ratio were observed within these hydrogels from day 0 to 56, with mineralization indicated by von Kossa histological staining. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) were used to analyze CaP mineral characteristics. No crystalline apatitic reflection peaks were observed using XRD, which was supported by the lack of observable mineral deposits as observed using SEM/EDX. However, FTIR showed the presence of new absorption peaks in the serum-containing samples at 28 and 56 days which suggested the formation of an immature apatitic-like mineral. The ability to undergo hydrophobicity-dependent and protein-mediated mineralization demonstrates the potential of these dual-gelling hydrogels as acellular self-mineralizing materials for bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 110-117, 2017.


Assuntos
Acrilamidas/química , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Hidrogéis/química , Soro/química , Animais , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Engenharia Tecidual/métodos
2.
J Biomater Sci Polym Ed ; 27(12): 1277-90, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27328947

RESUMO

This work investigated the effects of cellular encapsulation density and differentiation stage on the osteogenic capacity of injectable, dual physically and chemically gelling hydrogels comprised of thermogelling macromers and polyamidoamine crosslinkers. Undifferentiated and osteogenically predifferentiated mesenchymal stem cells (MSCs) were encapsulated within 20 wt% composite hydrogels with gelatin microparticles at densities of six or 15 million cells/mL. We hypothesized that a high encapsulation density and predifferentiation would promote increased cellular interaction and accelerate osteogenesis, leading to enhanced osteogenic potential in vitro. Hydrogels were able to maintain the viability of the encapsulated cells over a period of 28 days, with the high encapsulation density and predifferentiation group possessing the highest DNA content at all time points. Early alkaline phosphatase activity and mineralization were promoted by encapsulation density, whereas this effect by predifferentiation was only observed in the low seeding density groups. Both parameters only demonstrated short-lived effects when examined independently, but jointly led to greater levels of alkaline phosphatase activity and mineralization. The combined effects suggest that there may be optimal encapsulation densities and differentiation periods that need to be investigated to improve MSCs for biomaterial-based therapeutics in bone tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Diferenciação Celular , Gelatina/química , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Osteogênese , Animais , Células Cultivadas , Células Imobilizadas/citologia , Ratos Endogâmicos F344 , Engenharia Tecidual
3.
Biomaterials ; 67: 286-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26232878

RESUMO

Injectable, biodegradable, dual-gelling macromer solutions were used to encapsulate mesenchymal stem cells (MSCs) within stable hydrogels when elevated to physiologic temperature. Pendant phosphate groups were incorporated in the N-isopropyl acrylamide-based macromers to improve biointegration and facilitate hydrogel degradation. The MSCs were shown to survive the encapsulation process, and live cells were detected within the hydrogels for up to 28 days in vitro. Cell-laden hydrogels were shown to undergo significant mineralization in osteogenic medium. Cell-laden and acellular hydrogels were implanted into a critical-size rat cranial defect for 4 and 12 weeks. Both cell-laden and acellular hydrogels were shown to degrade in vivo and help to facilitate bone growth into the defect. Improved bone bridging of the defect was seen with the incorporation of cells, as well as with higher phosphate content of the macromer. Furthermore, direct bone-to-hydrogel contact was observed in the majority of implants, which is not commonly seen in this model. The ability of these macromers to deliver stem cells while forming in situ and subsequently degrade while facilitating bone ingrowth into the defect makes this class of macromers a promising material for craniofacial bone tissue engineering.


Assuntos
Materiais Biocompatíveis/farmacologia , Osso e Ossos/efeitos dos fármacos , Hidrogéis/farmacologia , Fosfatos/farmacologia , Polímeros/farmacologia , Engenharia Tecidual/métodos , Fosfatase Alcalina/metabolismo , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Cálcio/metabolismo , DNA/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Confocal , Ratos Endogâmicos F344 , Alicerces Teciduais/química , Microtomografia por Raio-X
4.
Ann Biomed Eng ; 43(3): 681-96, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25319726

RESUMO

Pre-clinical animal models play a crucial role in the translation of biomedical technologies from the bench top to the bedside. However, there is a need for improved techniques to evaluate implanted biomaterials within the host, including consideration of the care and ethics associated with animal studies, as well as the evaluation of host tissue repair in a clinically relevant manner. This review discusses non-invasive, quantitative, and real-time techniques for evaluating host-materials interactions, quality and rate of neotissue formation, and functional outcomes of implanted biomaterials for bone and cartilage tissue engineering. Specifically, a comparison will be presented for pre-clinical animal models, histological scoring systems, and non-invasive imaging modalities. Additionally, novel technologies to track delivered cells and growth factors will be discussed, including methods to directly correlate their release with tissue growth.


Assuntos
Osso e Ossos/fisiologia , Cartilagem/fisiologia , Regeneração , Animais , Materiais Biocompatíveis , Humanos , Próteses e Implantes , Engenharia Tecidual
5.
J Control Release ; 205: 25-34, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25483428

RESUMO

In this study, we investigated the mineralization capacity and biocompatibility of injectable, dual-gelling hydrogels in a rat cranial defect as a function of hydrogel hydrophobicity from either the copolymerization of a hydrolyzable lactone ring or the hydrogel polymer content. The hydrogel system comprised a poly(N-isopropylacrylamide)-based thermogelling macromer (TGM) and a polyamidoamine crosslinker. The thermogelling macromer was copolymerized with (TGM/DBA) or without (TGM) a dimethyl-γ-butyrolactone acrylate (DBA)-containing lactone ring that modulated the lower critical solution temperature and thus, the hydrogel hydrophobicity, over time. Three hydrogel groups were examined: (1) 15wt.% TGM, (2) 15wt.% TGM/DBA, and (3) 20wt.% TGM/DBA. The hydrogels were implanted within an 8mm critical size rat cranial defect for 4 and 12weeks. Implants were harvested at each timepoint and analyzed for bone formation, hydrogel mineralization and tissue response using microcomputed tomography (microCT). Histology and fibrous capsule scoring showed a light inflammatory response at 4weeks that was mitigated by 12weeks for all groups. MicroCT scoring and bone volume quantification demonstrated a similar bone formation at 4weeks that was significantly increased for the more hydrophobic hydrogel formulations - 15wt.% TGM and 20wt.% TGM/DBA - from 4weeks to 12weeks. A complementary in vitro acellular mineralization study revealed that the hydrogels exhibited calcium binding properties in the presence of serum-containing media, which was modulated by the hydrogel hydrophobicity. The tailored mineralization capacity of these injectable, dual-gelling hydrogels with hydrolysis-dependent hydrophobicity presents an exciting property for their use in bone tissue engineering applications.


Assuntos
Resinas Acrílicas/administração & dosagem , Materiais Biocompatíveis , Calcificação Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Crânio/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Acrilatos/química , Resinas Acrílicas/química , Animais , Cálcio/metabolismo , Reagentes de Ligações Cruzadas/química , Fibrose , Hidrogéis , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Injeções , Teste de Materiais , Proteína 2 Glutamina gama-Glutamiltransferase , Ratos Endogâmicos F344 , Crânio/diagnóstico por imagem , Crânio/metabolismo , Crânio/cirurgia , Temperatura , Fatores de Tempo , Microtomografia por Raio-X
6.
Biomacromolecules ; 15(1): 132-42, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24320599

RESUMO

Injectable, dual-gelling hydrogels were successfully developed through the combination of physical thermogellation at 37 °C and favorable amine:epoxy chemical cross-linking. Poly(N-isopropylacrylamide)-based thermogelling macromers with a hydrolyzable lactone ring and epoxy pendant groups and a biodegradable diamine-functionalized polyamidoamine cross-linker were synthesized, characterized, and combined to produce nonsyneresing and bioresorbable hydrogels. Differential scanning calorimetry and oscillatory rheometry demonstrated the rapid and dual-gelling nature of the hydrogel formation. The postgelation dimensional stability, swelling, and mechanical behavior of the hydrogel system were shown to be easily tuned in the synthesis and formulation stages. The leachable products were found to be cytocompatible under all conditions, while the degradation products demonstrated a dose- and time-dependent response due to solution osmolality. Preliminary encapsulation studies showed mesenchymal stem cell viability could be maintained for 7 days. The results suggest that injectable and thermally and chemically cross-linkable hydrogels are promising alternatives to prefabricated biomaterials for tissue engineering applications, particularly for cell delivery.


Assuntos
Hidrogéis/síntese química , Hidrogéis/metabolismo , Absorção/efeitos dos fármacos , Absorção/fisiologia , Animais , Disponibilidade Biológica , Linhagem Celular , Hidrogéis/administração & dosagem , Injeções , Ratos
7.
Biomacromolecules ; 13(9): 2821-30, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22881074

RESUMO

The impact of synthesis and solution formulation parameters on the swelling and mechanical properties of a novel class of thermally and chemically gelling hydrogels combining poly(N-isopropylacrylamide)-based thermogelling macromers containing pendant epoxy rings with polyamidoamine-based hydrophilic and degradable diamine cross-linking macromers was evaluated. Through variation of network hydrophilicity and capacity for chain rearrangement, the often problematic tendency of thermogelling hydrogels to undergo significant syneresis was addressed. The demonstrated ability to tune postformation dimensional stability easily at both the synthesis and formulation stages represents a significant novel contribution toward efforts to utilize poly(N-isopropylacrylamide)-based polymers as injectable biomaterials. Furthermore, the cytocompatibility of the hydrogel system under relevant conditions was established while demonstrating time- and dose-dependent cytotoxicity at high solution osmolality. Such injectable in situ forming degradable hydrogels with tunable water content are promising candidates for many tissue-engineering applications, particularly for cell delivery to promote rapid tissue regeneration in non-load-bearing defects.


Assuntos
Acrilamidas/química , Materiais Biocompatíveis/síntese química , Dendrímeros/química , Polímeros/química , Engenharia Tecidual/métodos , Resinas Acrílicas , Animais , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Injeções , Espectroscopia de Ressonância Magnética , Teste de Materiais , Concentração Osmolar , Ratos , Reologia , Temperatura , Alicerces Teciduais , Água
8.
Biomacromolecules ; 13(6): 1908-15, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22554407

RESUMO

Novel, injectable hydrogels were developed that solidify through a physical and chemical dual-gelation mechanism upon preparation and elevation of temperature to 37 °C. A thermogelling, poly(N-isopropylacrylamide)-based macromer with pendant epoxy rings and a hydrolytically degradable polyamidoamine-based diamine cross-linker were synthesized, characterized, and combined to produce in situ forming hydrogel constructs. Network formation through the epoxy-amine reaction was shown to be rapid and facile, and the progressive incorporation of the hydrophilic polyamidoamine cross-linker into the hydrogel was shown to mitigate the often problematic tendency of thermogelling materials to undergo significant postformation gel syneresis. The results suggest that this novel class of injectable hydrogels may be attractive substrates for tissue engineering applications due to the synthetic versatility of the component materials and beneficial hydrogel gelation kinetics and stability.


Assuntos
Hidrogéis/química , Hidrogéis/síntese química , Temperatura , Engenharia Tecidual , Acrilamidas/síntese química , Acrilamidas/química , Resinas Acrílicas , Géis/síntese química , Géis/química , Poliaminas/síntese química , Poliaminas/química , Polímeros/síntese química , Polímeros/química
9.
Adv Drug Deliv Rev ; 64(12): 1292-309, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22342771

RESUMO

The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with pre-programmed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering.


Assuntos
Regeneração Óssea , Sistemas de Liberação de Medicamentos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Animais , Materiais Biocompatíveis/química , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Portadores de Fármacos/química , Matriz Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA