RESUMO
In the Mediterranean Sea, the Strait of Messina (MS) is a very peculiar area, connecting highly different regions and representing a privileged observatory for an early comprehension and assessment of ecosystems shifts. It is hypothesized that the outbreaks observed near the coast of many sites in the Mediterranean Sea may be the result of transport of permanent populations of P. noctiluca in pelagic waters to the coast, caused by specific hydrodynamic conditions. By both visual observations and numerical experiments our objective is twofold: (A) to help clarify whether the basin of the Aeolian Islands Archipelago (AIA), in the Southern Tyrrhenian Sea (STS), may be the site from which large populations of P. noctiluca are transported to the MS, and (B) to evaluate whether the upwelling turbulent system of the MS can be an energetic opportunity for this species. It should offer a rich habitat without jeopardizing the overall survival of the population, that is subject to stranding due to strong currents. Although very different, the two involved ecosystems (AIA and MS ) are complementary for the success of Pelagia noctiluca life cycle. Outputs obtained by coupling the 3D hydrodynamic model (SHYFEM) with a Lagrangian particle tracking model support the hypothesis of a connectivity between these two ecosystems, particularly in the first half of the year, indicating the coastal areas around the AIA as potential optimal source location for Pelagia larval stages. We support the very attractive hypothesis that two connected systems exist, the former one favours Pelagia's reproduction and acts as a nursery and the latter favours its growth due to higher productivity. We speculate that the reproductive population of the AIA is not permanent, but is renewed every year by individuals who have fed and quickly grown in the MS and who are passively transported by downwelling along canyon "corridors".
Assuntos
Dinoflagellida , Cifozoários , Animais , Ecossistema , Humanos , Mar MediterrâneoRESUMO
The potential link between the microbial dynamics and the environmental parameters was investigated in a semi-enclosed and highly dynamic coastal system (Gulf of Trieste, northern Adriatic Sea, NE Mediterranean Sea). Our comprehensive 2-year time-series study showed that despite the shallowness of this area, there was a significant difference between the surface and the bottom bacterial community structure. The bottom bacterial community was more diverse than the surface one and influenced by sediment re-suspension. The surface seawater temperature had a profound effect on bacterial productivity, while the bacterial community structure was more affected by freshwater-borne nutrients and phytoplankton blooms. Phytoplankton blooms caused an increase of Gammaproteobacteria (Alteromonadaceae, SAR86 and Vibrionaceae) and shift in dominance from SAR11 to Rhodobacteraceae taxon at the surface. Our results propose the importance of the water mass movements as drivers of freshwater-borne nutrients and of allochthonous microbial taxa. This study emphasizes the prediction power based on association networks analyses that are fed with long-term measurements of microbial and environmental parameters. These interaction maps offer valuable insights into the response of marine ecosystem to climate- and anthropogenic-driven stressors.
Assuntos
Sedimentos Geológicos/microbiologia , Consórcios Microbianos/fisiologia , Fitoplâncton/metabolismo , Água do Mar/microbiologia , Alphaproteobacteria/crescimento & desenvolvimento , Clima , Gammaproteobacteria/crescimento & desenvolvimento , Mar Mediterrâneo , Dados de Sequência Molecular , Mar do Norte , Fitoplâncton/microbiologia , RNA Ribossômico 16S/genética , Rhodobacteraceae/crescimento & desenvolvimento , Temperatura , Movimentos da ÁguaRESUMO
The separation of organic acids on the anion-exchange monolithic support, commercially available as Convective Interaction Media (CIM), is presented in this study. It is demonstrated that citric, isocitric, pyruvic, fumaric, malic, and alpha-ketoglutaric acid can be successfully separated using a CIM monolithic column of suitable user-adjustable length. The effect of the mobile phase composition on the separation is investigated. CIM monolithic columns of adjustable length from 3 to 18 mm are compared regarding the resolution and the back pressure. It is shown that the CIM monolithic column of 12 mm in length enables a good separation of all six organic acids within 3 min and exhibits a linear dependence of back pressure versus flow rate. The resolution and the dynamic binding capacity are found to be flow-unaffected. A filtrated sample of bioprocess supernatant is analyzed without previous pretreatment, which indicates the possibility of online monitoring of small molecules during the bioprocess using CIM monolithic columns.
RESUMO
Different ligands with high molecular masses are immobilized on compact, porous separation units and used for affinity chromatography. In subsequent experiments different enzymes are immobilized and used for converting substrates with low and high molecular masses. Disk or tube with immobilized concanavalin A (ConA) are used as model systems for lectin affinity chromatography. The enzyme glucose oxidase is used as a standard protein to test the ConA units. Subsequently glycoproteins from plasma membranes of rat liver are separated, using units with immobilized ConA. The enzyme dipeptidyl peptidase i.v., which is used as a model protein in the experiments, is enriched about 40-fold in a single step, with a yield of over 90%. The results are only slightly better than those obtained with ConA when it is immobilized on bulk supports. The important improvement lies in the reduction of separation time to only 1 h. Experiments concerning the isolation of monoclonal antibodies against clotting factor VIII (FVIII) are carried out on disks, combining anion-exchange chromatography and protein A affinity chromatography as a model for multidimensional chromatography. Both IgG (bound to the protein A disk) and accompanying proteins (bound to the anion-exchange disk) from mouse ascites fluid are retarded and eluted separately. With the immobilized enzymes invertase and glucose oxidase (GOX) the corresponding substrates with low molecular masses, saccharose and glucose, are converted. It is shown that the amount of immobilized enzyme and the concentration of the substrate are responsible for the extent of the conversion, whereas the flow-rates used in the experiments have no effect at all. The influence of immobilization chemistry was investigated with GOX. Indirect immobilization with ConA as spacer proved to be the best alternative. With trypsin, immobilized on a disk, substrates with high molecular masses are digested in flow-through. For optimal digestion the proteins have to be denatured in the buffer for sodium dodecyl sulfate-polyacrlyamide gel electrophoresis prior to application. In contrast to the conversion of substrates with low molecular masses, flow-rates play an important part in conversion of substrates with high molecular masses. With lower flow-rates a higher degree of digestion is achieved.