Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 44(24): 1978-1988, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37828276

RESUMO

Messenger RNA (mRNA) has emerged as a modality with immense therapeutic potential. Recent innovations in production process of mRNA call for procedures to isolate pure mRNA drug substance (DS) with high yield, high capacity, scalability, and compatibility with GMP production systems. Novel RNA modalities, such as circular RNA (circRNA), have further driven the need for non-affinity capture possibilities which are already widely used in the biopharmaceutical industry, for example, in monoclonal antibody processing. The principle that multimodal ion exchange/hydrogen bonding chromatography can be used to separate mRNA from in vitro transcription components has recently been demonstrated. Here, we apply and refine this approach to be suitable for scalable purification of multiple mRNA constructs with sufficient yields, purity, and stability, for use in mRNA production process. Binding capacity of the PrimaS-modified monolithic chromatographic column for mRNA enabled up to 7 mg/mL product isolation in a single chromatographic run, with 98% recovery and room temperature stability of the eGFP mRNA demonstrated for up to 28 days. This approach is independent of construct size or the presence of polyadenylic acid tail and is applicable for capture of a wide variety of RNAs, including mRNA, self-amplifying RNA, circRNA, and with optimization also smaller RNAs such as transfer RNA and others.


Assuntos
RNA Circular , RNA , RNA Mensageiro/genética , Cromatografia por Troca Iônica/métodos , Ânions
2.
Biotechnol Bioeng ; 120(3): 737-747, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36471904

RESUMO

The COVID-19 pandemic triggered an unprecedented rate of development of messenger ribonucleic acid (mRNA) vaccines, which are produced by in vitro transcription reactions. The latter has been the focus of intense development to increase productivity and decrease cost. Optimization of in vitro transcription (IVT) depends on understanding the impact of individual reagents on the kinetics of mRNA production and the consumption of building blocks, which is hampered by slow, low-throughput, end-point analytics. We implemented a workflow based on rapid at-line high pressure liquid chromatography (HPLC) monitoring of consumption of nucleoside triphosphates (NTPs) with concomitant production of mRNA, with a sub-3 min read-out, allowing for adjustment of IVT reaction parameters with minimal time lag. IVT was converted to fed-batch resulting in doubling the reaction yield compared to batch IVT protocol, reaching 10 mg/ml for multiple constructs. When coupled with exonuclease digestion, HPLC analytics for quantification of mRNA was extended to monitoring capping efficiency of produced mRNA. When HPLC monitoring was applied to production of an anti-reverse cap analog (ARCA)-capped mRNA construct, which requires an approximate 4:1 ARCA:guanidine triphosphate ratio, the optimized fed-batch approach achieved productivity of 9 mg/ml with 79% capping. The study provides a methodological platform for optimization of factors influencing IVT reactions, converting the reaction from batch to fed-batch mode, determining reaction kinetics, which are critical for optimization of continuous addition of reagents, thus in principle enabling continuous manufacturing of mRNA.


Assuntos
COVID-19 , Pandemias , Humanos , Cromatografia Líquida de Alta Pressão , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA