Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 97(17): 9425-30, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10920196

RESUMO

Site-specific proteolysis is an important biological mechanism for the regulation of cellular processes such as gene expression, cell signaling, development, and apoptosis. In transcriptional regulation, specific proteolysis regulates the localization and activity of many regulatory factors. The C1 factor (HCF), a cellular transcription factor and coactivator, undergoes site-specific proteolytic processing at a series of unusual amino acid reiterations to generate a family of amino- and carboxyl-terminal polypeptides that remain tightly associated. Expression and purification of bacterially expressed domains of the C1 factor identifies an autocatalytic activity that is responsible for the specific cleavage of the reiterations. In addition, coexpression of the autocatalytic domain with a heterologous protein containing a target cleavage site demonstrates that the C1 protease may also function in trans.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Catálise , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Imunofluorescência , Fator C1 de Célula Hospedeira , Modelos Biológicos , Dados de Sequência Molecular , Peso Molecular , Fator 1 de Transcrição de Octâmero , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sequências Repetitivas de Aminoácidos/fisiologia , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética
2.
EMBO J ; 19(4): 683-90, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-10675337

RESUMO

Transcription of the herpes simplex virus 1 (HSV-1) immediate early (IE) genes is determined by multiprotein enhancer complexes. The core enhancer assembly requires the interactions of the POU-homeodomain protein Oct-1, the viral transactivator alphaTIF and the cellular factor C1 (HCF). In this context, the C1 factor interacts with each protein to assemble the stable enhancer complex. In addition, the IE enhancer cores contain adjacent binding sites for other cellular transcription factors such as Sp1 and GA-binding protein (GABP). In this study, a direct interaction of the C1 factor with GABP is demonstrated, defining the C1 factor as the critical coordinator of the enhancer complex assembly. In addition, mutations that reduce the GABP transactivation potential also impair the C1-GABP interaction, indicating that the C1 factor functions as a novel coactivator of GABP-mediated transcription. The interaction and coordinated assembly of the enhancer proteins by the C1 factor may be critical for the regulation of the HSV lytic-latent cycle.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Herpesvirus Humano 1/genética , Proteínas/genética , Proteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Primers do DNA/genética , Fator de Transcrição de Proteínas de Ligação GA , Genes Precoces , Células HeLa , Herpesvirus Humano 1/fisiologia , Fator C1 de Célula Hospedeira , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido
3.
Proc Natl Acad Sci U S A ; 96(4): 1229-33, 1999 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-9990006

RESUMO

After a primary infection, herpes simplex virus is maintained in a latent state in neurons of sensory ganglia until complex stimuli reactivate viral lytic replication. Although the mechanisms governing reactivation from the latent state remain unknown, the regulated expression of the viral immediate early genes represents a critical point in this process. These genes are controlled by transcription enhancer complexes whose assembly requires and is coordinated by the cellular C1 factor (host cell factor). In contrast to other tissues, the C1 factor is not detected in the nuclei of sensory neurons. Experimental conditions that induce the reactivation of herpes simplex virus in mouse model systems result in rapid nuclear localization of the protein, indicating that the C1 factor is sequestered in these cells until reactivation signals induce a redistribution of the protein. The regulated localization suggests that C1 is a critical switch determinant of the viral lytic-latent cycle.


Assuntos
Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Proteínas de Membrana/metabolismo , Neurônios Aferentes/fisiologia , Proteínas/fisiologia , Receptores Citoplasmáticos e Nucleares , Simplexvirus/fisiologia , Fatores de Transcrição , Gânglio Trigeminal/fisiologia , Ativação Viral/fisiologia , Animais , Núcleo Celular/metabolismo , Proteína Coatomer , Regulação Viral da Expressão Gênica , Genes Precoces , Fator C1 de Célula Hospedeira , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Crescimento Neural/farmacologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/virologia , Técnicas de Cultura de Órgãos , Especificidade de Órgãos , Biossíntese de Proteínas , Proteínas/análise , Gânglio Trigeminal/virologia , Latência Viral
4.
Genetics ; 142(3): 661-72, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8849877

RESUMO

Mutations in an N-terminal 70-amino acid domain of bacteriophage Mu's repressor cause temperature-sensitive DNA-binding activity. Surprisingly, amber mutations can conditionally correct the heat-sensitive defect in three mutant forms of the repressor gene, cts25 (D43-G), cts62 (R47-Q) and cts71 (M28-I), and in the appropriate bacterial host produce a heat-stable Sts phenotype (for survival of temperature shifts). Sts repressor mutants are heat sensitive when in supE or supF hosts and heat resistant when in Sup degrees hosts. Mutants with an Sts phenotype have amber mutations at one of three codons, Q179, Q187, or Q190. The Sts phenotype relates to the repressor size: in Sup degrees hosts sts repressors are shorter by seven, 10, or 18 amino acids compared to repressors in supE or supF hosts. The truncated form of the sts62-1 repressor, which lacks 18 residues (Q179-V196), binds Mu operator DNA more stably at 42 degrees in vitro compared to its full-length counterpart (cts62 repressor). In addition to influencing temperature sensitivity, the C-terminus appears to control the susceptibility to in vivo Clp proteolysis by influencing the multimeric structure of repressor.


Assuntos
Adenosina Trifosfatases , Bacteriófago mu/genética , Regulação Viral da Expressão Gênica , Proteínas Repressoras/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Bacteriófago mu/química , Bacteriófago mu/metabolismo , Sequência de Bases , DNA Viral , Endopeptidase Clp , Deleção de Genes , Dados de Sequência Molecular , Proteínas Repressoras/metabolismo , Serina Endopeptidases/metabolismo , Sensação Térmica , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias
5.
Curr Biol ; 5(3): 306-17, 1995 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-7780741

RESUMO

BACKGROUND: The heat-shock protein Hsp104 plays a crucial role in the survival of cells exposed to high temperatures and other severe stresses, but its specific functions and the biological pathways on which it operates have been unclear. Indeed, very little is known about the specific cellular processes in which any of the heat-shock proteins acts to affect thermotolerance. One essential process that is particularly sensitive to heat in many organisms is the splicing of intervening sequences from mRNA precursors. RESULTS: We have examined the role of Hsp104 in the repair of splicing after disruption by heat shock. When splicing in the budding yeast Saccharomyces cerevisiae was disrupted by a brief heat shock, it recovered much more rapidly in wild-type strains than in strains containing hsp104 mutations. Constitutive expression of Hsp104 promoted the recovery of heat-damaged splicing in the absence of other protein synthesis, but did not protect splicing from the initial disruption, suggesting that Hsp104 functions to repair splicing after heat damage rather than to prevent the initial damage. A modest reduction in the recovery of splicing after heat shock in an hsp70 mutant suggested that Hsp70 may also function in the repair of splicing. The roles of Hsp104 and Hsp70 were confirmed by the ability of the purified proteins to restore splicing in extracts that had been heat-inactivated in vitro. Together, these two proteins were able to restore splicing to a greater degree than could be accomplished by an optimal concentration of either protein alone. CONCLUSIONS: Our findings provide the first demonstration of the roles of heat-shock proteins in a biological process that is known to be particularly sensitive to heat in vivo. The results support previous genetic arguments that the Hsp104 and Hsp70 proteins have different, but related, functions in protecting cells from the toxic effects of high temperatures. Because Hsp104 and Hsp70 are able to function in vitro, after the heat-damaged substrate or substrates have been generated, neither protein is required to bind to its target(s) during heating in order to effect repair.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/metabolismo , Expressão Gênica , Genótipo , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico HSP70/isolamento & purificação , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/isolamento & purificação , Temperatura Alta , Cinética , Mutação , Especificidade da Espécie
6.
J Bacteriol ; 175(20): 6484-91, 1993 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8407824

RESUMO

The phenotypes of single Hsp104 and Hsp70 mutants of the budding yeast Saccharomyces cerevisiae provide no clue that these proteins are functionally related. Mutation of the HSP104 gene severely reduces the ability of cells to survive short exposures to extreme temperatures (thermotolerance) but has no effect on growth rates. On the other hand, mutations in the genes that encode Hsp70 proteins have significant effects on growth rates but do not reduce thermotolerance. The absence of a thermotolerance defect in S. cerevisiae Hsp70 mutants is puzzling, since the protein clearly plays an important role in thermotolerance in a variety of other organisms. In this report, examination of the phenotypes of combined Hsp104 and Hsp70 mutants uncovers similarities in the functions of Hsp104 and Hsp70 not previously apparent. In the absence of the Hsp104 protein, Hsp70 is very important for thermotolerance in S. cerevisiae, particularly at very early times after a temperature upshift. Similarly, Hsp104 plays a substantial role in vegetative growth under conditions of decreased Hsp70 protein levels. These results suggest a close functional relationship between Hsp104 and Hsp70.


Assuntos
Proteínas de Choque Térmico/genética , Saccharomyces cerevisiae/genética , Análise Mutacional de DNA , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Temperatura Alta , Deleção de Sequência
7.
J Bacteriol ; 173(20): 6568-77, 1991 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1833382

RESUMO

Phage Mu's c gene product is a cooperative regulatory protein that binds to a large, complex, tripartite 184-bp operator. To probe the mechanism of repressor action, we isolated and characterized 13 phage mutants that cause Mu to undergo lytic development when cells are shifted from 30 to 42 degrees C. This collection contained only four mutations in the repressor gene, and all were clustered near the N terminus. The cts62 substitution of R47----Q caused weakened specific DNA recognition and altered cooperativity in vitro. A functional repressor with only 63 amino acids of Mu repressor fused to a C-terminal fragment of beta-galactosidase was constructed. This chimeric protein was an efficient repressor, as it bound specifically to Mu operator DNA in vitro and its expression conferred Mu immunity in vivo. A DNA looping model is proposed to explain regulation of the tripartite operator site and the highly cooperative nature of repressor binding.


Assuntos
Bacteriófago mu/genética , Proteínas de Ligação a DNA/genética , Mutação/genética , Proteínas Repressoras/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , DNA Viral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Regulação Viral da Expressão Gênica/genética , Cinética , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutagênese , Conformação de Ácido Nucleico , Regiões Operadoras Genéticas/genética , Regiões Operadoras Genéticas/fisiologia , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Repressoras/metabolismo , Temperatura , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias , beta-Galactosidase/genética
8.
J Bacteriol ; 173(20): 6578-85, 1991 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1833383

RESUMO

Virulent mutations in the bacteriophage Mu repressor gene were isolated and characterized. Recombination and DNA sequence analysis have revealed that virulence is due to unusual frameshift mutations which change several C-terminal amino acids. The vir mutations are in the same repressor region as the sts amber mutations which, by eliminating several C-terminal amino acids, suppress thermosensitivity of repressor binding to the operators by its N-terminal domain (J. L. Vogel, N. P. Higgins, L. Desmet, V. Geuskens, and A. Toussaint, unpublished data). Vir repressors bind Mu operators very poorly. Thus the Mu repressor C terminus, either by itself or in conjunction with other phage or host proteins, tunes the DNA-binding properties at the repressor N terminus.


Assuntos
Bacteriófago mu/genética , Proteínas de Ligação a DNA/genética , Mutação da Fase de Leitura/genética , Proteínas Repressoras/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Bacteriófago mu/isolamento & purificação , Bacteriófago mu/fisiologia , Sequência de Bases , Western Blotting , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Genes Dominantes/genética , Dados de Sequência Molecular , Mutagênese , Regiões Operadoras Genéticas/fisiologia , Fenótipo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Temperatura , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA