Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Clin Monit Comput ; 33(2): 175-183, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30374759

RESUMO

The American Society of Neurophysiological Monitoring (ASNM) was founded in 1989 as the American Society of Evoked Potential Monitoring. From the beginning, the Society has been made up of physicians, doctoral degree holders, Technologists, and all those interested in furthering the profession. The Society changed its name to the ASNM and held its first Annual Meeting in 1990. It remains the largest worldwide organization dedicated solely to the scientifically-based advancement of intraoperative neurophysiology. The primary goal of the ASNM is to assure the quality of patient care during procedures monitoring the nervous system. This goal is accomplished primarily through programs in education, advocacy of basic and clinical research, and publication of guidelines, among other endeavors. The ASNM is committed to the development of medically sound and clinically relevant guidelines for the performance of intraoperative neurophysiology. Guidelines are formulated based on exhaustive literature review, recruitment of expert opinion, and broad consensus among ASNM membership. Input is likewise sought from sister societies and related constituencies. Adherence to a literature-based, formalized process characterizes the construction of all ASNM guidelines. The guidelines covering the Professional Practice of intraoperative neurophysiological monitoring were initially published January 24th, 2013, and subsequently that document has undergone review and revision to accommodate broad inter- and intra-societal feedback. This current version of the ASNM Professional Practice Guideline was fully approved for publication according to ASNM bylaws on February 22nd, 2018, and thus overwrites and supersedes the initial guideline.


Assuntos
Monitorização Neurofisiológica Intraoperatória/normas , Monitorização Neurofisiológica/normas , Neurofisiologia/normas , Humanos , Organização e Administração , Médicos , Sociedades Médicas , Estados Unidos
3.
Spine J ; 18(10): 1763-1778, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29505853

RESUMO

BACKGROUND CONTEXT: Intraoperative neurophysiological monitoring (IONM) has gained rather widespread acceptance as a method to mitigate risk to the lumbar plexus during lateral lumbar interbody fusion (LLIF) surgery. The most common approach to IONM involves using only electromyography (EMG) monitoring, and the rate of postoperative deficit remains unacceptably high. Other test modalities, such as transcranial electric motor-evoked potentials (tcMEPs) and somatosensory-evoked potentials, may be more suitable for monitoring neural integrity, but they have not been widely adopted during LLIF. Recent studies have begun to examine their utility in monitoring LLIF surgery with favorable results. PURPOSE: This study aimed to evaluate the efficacy of different IONM paradigms in the prevention of iatrogenic neurologic sequelae during LLIF and to specifically evaluate the utility of including tcMEPs in an IONM strategy for LLIF surgery. STUDY DESIGN/SETTING: A non-randomized, retrospective analysis of 479 LLIF procedures at a single institution over a 4-year period was conducted. During the study epoch, three different IONM strategies were used for LLIF procedures: (1) surgeon-directed T-EMG monitoring ("SD-EMG"), (2) neurophysiologist-controlled T-EMG monitoring ("NC-EMG"), and (3) neurophysiologist-controlled T-EMG monitoring supplemented with MEP monitoring ("NC-MEP"). PATIENT SAMPLE: The patient population comprised 254 men (53.5%) and 221 women (46.5%). Patient age ranged from a minimum of 21 years to a maximum of 89 years, with a mean of 56.6 years. OUTCOME MEASURES: Physician-documented physiological measures included manual muscle test grading of hip-flexion, hip-adduction, or knee-extension, as well as hypo- or hyperesthesia of the groin or anterolateral thigh on the surgical side. Self-reported measures included numbness or tingling in the groin or anterolateral thigh on the surgical side. METHODS: Patient progress notes were reviewed from the postoperative period up to 12 months after surgery. The rates of postoperative sensory-motor deficit consistent with lumbar plexopathy or peripheral nerve palsy on the surgical side were compared between the three cohorts. RESULTS: Using the dependent measure of neurologic deficit, whether motor or sensory, patients with NC-MEP monitoring had the lowest rate of immediate postoperative deficit (22.3%) compared with NC-EMG monitoring (37.1%) and SD-EMG monitoring (40.4%). This result extended to sensory deficits consistent with lumbar plexopathy (pure motor deficits being excluded); patients with NC-MEP monitoring had the lowest rate (20.5%) compared with NC-EMG monitoring (34.3%) and SD-EMG monitoring (36.9%). Additionally, evaluation of postoperative motor deficits consistent with peripheral nerve palsy (pure sensory deficits being excluded) revealed that the NC-MEP group had the lowest rate (5.7%) of motor deficit compared with the SD-EMG (17.0%) and NC-EMG (17.1%) cohorts. Finally, when assessing only those patients whose last follow-up was greater than or equal to 12 months (n=251), the rate of unresolved motor deficits was significantly lower in the NC-MEP group (0.9%) compared with NC-EMG (6.9%) and SD-EMG (11.0%). A comparison of the NC-MEP versus NC-EMG and SD-EMG groups, both independently and combined, was statistically significant (>95% confidence level) for all analyses. CONCLUSIONS: The results of the present study indicate that preservation of tcMEPs from the adductor longus, quadriceps, and tibialis anterior muscles are of paramount importance for limiting iatrogenic sensory and motor injuries during LLIF surgery. In this regard, the inclusion of tcMEPs serves to compliment EMG and allows for the periodic, functional assessment of at-risk nerves during these procedures. Thus, tcMEPs appear to be the most effective modality for the prevention of both transient and permanent neurologic injury during LLIF surgery. We propose that the standard paradigm for protecting the nervous system during LLIF be adapted to include tcMEPs.


Assuntos
Potencial Evocado Motor/fisiologia , Monitorização Neurofisiológica Intraoperatória/métodos , Vértebras Lombares/cirurgia , Complicações Pós-Operatórias/prevenção & controle , Fusão Vertebral/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletromiografia/métodos , Feminino , Humanos , Doença Iatrogênica/prevenção & controle , Masculino , Pessoa de Meia-Idade , Transtornos Motores/etiologia , Transtornos Motores/prevenção & controle , Estudos Retrospectivos , Transtornos de Sensação/etiologia , Transtornos de Sensação/prevenção & controle , Fusão Vertebral/efeitos adversos , Adulto Jovem
4.
Scientifica (Cairo) ; 2016: 1751245, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293965

RESUMO

Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cranial nerves, corticospinal tract, corticobulbar tract, and the thalamocortical somatosensory system during endonasal surgery of the skull base. The modalities employed include electroencephalography, somatosensory evoked potentials, free-running and electrically triggered electromyography, transcranial electric motor evoked potentials, and auditory evoked potentials. Methodological considerations as well as benefits and limitations are discussed. The authors argue that, while individual modalities have their limitations, multimodality neuromonitoring provides a real-time, comprehensive assessment of nervous system function and allows for safer, more aggressive management of skull base tumors via the endonasal route.

5.
Behav Neurosci ; 123(1): 62-74, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19170431

RESUMO

The role of the cerebellar cortex in eyeblink classical conditioning remains unclear. Experimental manipulations that disrupt the normal function impair learning to various degrees, and task parameters may be important factors in determining the severity of impairment. This study examined the role of cerebellar cortex in eyeblink conditioning under conditioned stimulus?unconditioned stimulus intervals known to be optimal or nonoptimal for learning. Using infusions of picrotoxin to the interpositus nucleus of the rabbit cerebellum, the authors pharmacologically disrupted input from the cerebellar cortex while training with an interstimulus interval (ISI)-switch procedure. One group of rabbits (Oryctolagus cuniculus) was 1st trained with a 250-ms ISI (optimal) and then switched to a 750-ms ISI (nonoptimal). A 2nd group was trained in the opposite order. The most striking effect was that picrotoxin-treated rabbits initially trained with a 250-ms ISI learned comparably to controls, but those initially trained with a 750-ms ISI were severely impaired. These results suggest that functional input from cerebellar cortex becomes increasingly important for the interpositus nucleus to learn delay eyeblink conditioning as the ISI departs from an optimal interval.


Assuntos
Córtex Cerebelar/efeitos dos fármacos , Núcleos Cerebelares/efeitos dos fármacos , Condicionamento Palpebral/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Picrotoxina/farmacologia , Estimulação Acústica , Análise de Variância , Animais , Mapeamento Encefálico , Córtex Cerebelar/fisiologia , Núcleos Cerebelares/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Condicionamento Palpebral/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Coelhos , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Fatores de Tempo
6.
Physiol Behav ; 96(3): 399-411, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19071146

RESUMO

Over the last several years, a growing number of investigators have begun using the rat in classical eyeblink conditioning experiments, yet relatively few parametric studies have been done to examine the nature of conditioning in this species. We report here a parametric analysis of classical eyeblink conditioning in the adult rat using two conditioned stimulus (CS) modalities (light or tone) and three interstimulus intervals (ISI; 280, 580, or 880 ms). Rats trained at the shortest ISI generated the highest percentage of conditioned eyeblink responses (CRs) by the end of training. At the two longer ISIs, rats trained with the tone CS produced unusually high CR percentages over the first few acquisition sessions, relative to rats trained with the light CS. Experiment 2 assessed non-associative blink rates in response to presentations of the light or tone, in the absence of the US, at the same ISI durations used in paired conditioning. Significantly more blinks occurred with longer than shorter duration lights or tones. A higher blink rate was also recorded at all three durations during the early tone-alone sessions. The results suggest that early in classical eyeblink conditioning, rats trained with a tone CS may emit a high number of non-associative blinks, thereby inflating the CR frequency reported at this stage of training.


Assuntos
Aprendizagem por Associação/fisiologia , Piscadela/fisiologia , Condicionamento Clássico/fisiologia , Condicionamento Palpebral/fisiologia , Estimulação Acústica , Análise de Variância , Animais , Feminino , Masculino , Estimulação Luminosa , Ratos , Tempo de Reação , Fatores de Tempo
7.
Learn Mem ; 9(5): 321-36, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12359840

RESUMO

In this study we tested 4-, 9-, 12-, and 18-month-old C57BL/6 mice in the 250-msec delay eyeblink classical conditioning procedure to study age-related changes in a form of associative learning. The short life expectancy of mice, complete knowledge about the mouse genome, and the availability of transgenic and knock-out mouse models of age-related impairments make the mouse an excellent species for expanding knowledge on the neurobiologically and behaviorally well-characterized eyeblink classical conditioning paradigm. Based on previous research with delay eyeblink conditioning in rabbits and humans, we predicted that mice would be impaired on this cerebellar-dependent associative learning task in middle-age, at ~9 months. To fully examine age differences in behavior in mice, we used a battery of additional behavioral measures with which to compare young and older mice. These behaviors included the acoustic startle response, prepulse inhibition, rotorod, and the Morris water maze. Mice began to show impairment in cerebellar-dependent tasks such as rotorod and eyeblink conditioning at 9 to 12 months of age. Performance in hippocampally dependent tasks was not impaired in any group, including 18-month-old mice. These results in mice support results in other species, indicating that cerebellar-dependent tasks show age-related deficits earlier in adulthood than do hippocampally dependent tasks.


Assuntos
Envelhecimento/fisiologia , Condicionamento Clássico/fisiologia , Condicionamento Palpebral/fisiologia , Estimulação Acústica , Animais , Feminino , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Equilíbrio Postural/fisiologia , Reflexo de Sobressalto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA