Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(21): eadj8769, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787942

RESUMO

Circular RNAs (circRNAs) are a large class of noncoding RNAs. Despite the identification of thousands of circular transcripts, the biological significance of most of them remains unexplored, partly because of the lack of effective methods for generating loss-of-function animal models. In this study, we focused on circTulp4, an abundant circRNA derived from the Tulp4 gene that is enriched in the brain and synaptic compartments. By creating a circTulp4-deficient mouse model, in which we mutated the splice acceptor site responsible for generating circTulp4 without affecting the linear mRNA or protein levels, we were able to conduct a comprehensive phenotypic analysis. Our results demonstrate that circTulp4 is critical in regulating neuronal and brain physiology, modulating the strength of excitatory neurotransmission and sensitivity to aversive stimuli. This study provides evidence that circRNAs can regulate biologically relevant functions in neurons, with modulatory effects at multiple levels of the phenotype, establishing a proof of principle for the regulatory role of circRNAs in neural processes.


Assuntos
Encéfalo , RNA Circular , Transmissão Sináptica , RNA Circular/genética , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/fisiologia , Camundongos Knockout , Neurônios/metabolismo , Neurônios/fisiologia
2.
Nat Commun ; 14(1): 7674, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996418

RESUMO

Sporadic Parkinson's Disease (sPD) is a progressive neurodegenerative disorder caused by multiple genetic and environmental factors. Mitochondrial dysfunction is one contributing factor, but its role at different stages of disease progression is not fully understood. Here, we showed that neural precursor cells and dopaminergic neurons derived from induced pluripotent stem cells (hiPSCs) from sPD patients exhibited a hypometabolism. Further analysis based on transcriptomics, proteomics, and metabolomics identified the citric acid cycle, specifically the α-ketoglutarate dehydrogenase complex (OGDHC), as bottleneck in sPD metabolism. A follow-up study of the patients approximately 10 years after initial biopsy demonstrated a correlation between OGDHC activity in our cellular model and the disease progression. In addition, the alterations in cellular metabolism observed in our cellular model were restored by interfering with the enhanced SHH signal transduction in sPD. Thus, inhibiting overactive SHH signaling may have potential as neuroprotective therapy during early stages of sPD.


Assuntos
Células-Tronco Neurais , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Células-Tronco Neurais/metabolismo , Seguimentos , Neurônios Dopaminérgicos/metabolismo , Progressão da Doença
3.
Nat Commun ; 13(1): 4819, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974013

RESUMO

Parkinson's disease (PD) as a progressive neurodegenerative disorder arises from multiple genetic and environmental factors. However, underlying pathological mechanisms remain poorly understood. Using multiplexed single-cell transcriptomics, we analyze human neural precursor cells (hNPCs) from sporadic PD (sPD) patients. Alterations in gene expression appear in pathways related to primary cilia (PC). Accordingly, in these hiPSC-derived hNPCs and neurons, we observe a shortening of PC. Additionally, we detect a shortening of PC in PINK1-deficient human cellular and mouse models of familial PD. Furthermore, in sPD models, the shortening of PC is accompanied by increased Sonic Hedgehog (SHH) signal transduction. Inhibition of this pathway rescues the alterations in PC morphology and mitochondrial dysfunction. Thus, increased SHH activity due to ciliary dysfunction may be required for the development of pathoetiological phenotypes observed in sPD like mitochondrial dysfunction. Inhibiting overactive SHH signaling may be a potential neuroprotective therapy for sPD.


Assuntos
Proteínas Hedgehog , Células-Tronco Neurais , Doença de Parkinson , Animais , Cílios/metabolismo , Modelos Animais de Doenças , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transdução de Sinais
4.
Nat Metab ; 4(5): 589-607, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35618940

RESUMO

Pyruvate dehydrogenase (PDH) is the gatekeeper enzyme of the tricarboxylic acid (TCA) cycle. Here we show that the deglycase DJ-1 (encoded by PARK7, a key familial Parkinson's disease gene) is a pacemaker regulating PDH activity in CD4+ regulatory T cells (Treg cells). DJ-1 binds to PDHE1-ß (PDHB), inhibiting phosphorylation of PDHE1-α (PDHA), thus promoting PDH activity and oxidative phosphorylation (OXPHOS). Park7 (Dj-1) deletion impairs Treg survival starting in young mice and reduces Treg homeostatic proliferation and cellularity only in aged mice. This leads to increased severity in aged mice during the remission of experimental autoimmune encephalomyelitis (EAE). Dj-1 deletion also compromises differentiation of inducible Treg cells especially in aged mice, and the impairment occurs via regulation of PDHB. These findings provide unforeseen insight into the complicated regulatory machinery of the PDH complex. As Treg homeostasis is dysregulated in many complex diseases, the DJ-1-PDHB axis represents a potential target to maintain or re-establish Treg homeostasis.


Assuntos
Oxirredutases , Doença de Parkinson , Proteína Desglicase DJ-1 , Piruvatos , Linfócitos T Reguladores , Envelhecimento , Animais , Homeostase , Camundongos , Oxirredutases/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/genética , Piruvatos/metabolismo , Linfócitos T Reguladores/metabolismo
5.
Mol Aspects Med ; 86: 101096, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35370007

RESUMO

Parkinson's disease (PD) is a still incurable neurodegenerative disorder with a highly complex etiology. While about 10% of cases are associated with single-gene mutations, the majority of PD is thought to originate from a combination of factors such as environmental impact, lifestyle and aging. Even though investigations into the genetically caused cases have uncovered major pathomechanisms of the disease there still exists a wide gap concerning the molecular impact of the other risk factors. All of them are known to have a major impact on the oxidative burden of the cell and thus strongly influence the non-enzymatic posttranslational modifications (nePTMs) of proteins. These modifications are by now known to dramatically alter the stability of proteins, their interactomes, and also their functions. However, the knowledge of nePTMs and their possible causative role in the pathoetiology of PD is just starting to emerge again guided by research on PD-associated genes. In this short review, we will thus concentrate on known nePTMs of two PD-associated genes, SCNA and DJ-1, and discuss their role in the pathoetiology of PD. In the future, it will, however, be essential to unravel the complete "environmental proteome" to understand the impact of nePTMs on PD etiology. This might open up new pathways urgently needed to develop new diagnostic and therapeutic tools for this still incurable disease.


Assuntos
Doença de Parkinson , Humanos , Mutação , Oxirredução , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Processamento de Proteína Pós-Traducional
6.
EMBO Mol Med ; 14(5): e14797, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35373464

RESUMO

Direct reprogramming based on genetic factors resembles a promising strategy to replace lost cells in degenerative diseases such as Parkinson's disease. For this, we developed a knock-in mouse line carrying a dual dCas9 transactivator system (dCAM) allowing the conditional in vivo activation of endogenous genes. To enable a translational application, we additionally established an AAV-based strategy carrying intein-split-dCas9 in combination with activators (AAV-dCAS). Both approaches were successful in reprogramming striatal astrocytes into induced GABAergic neurons confirmed by single-cell transcriptome analysis of reprogrammed neurons in vivo. These GABAergic neurons functionally integrate into striatal circuits, alleviating voluntary motor behavior aspects in a 6-OHDA Parkinson's disease model. Our results suggest a novel intervention strategy beyond the restoration of dopamine levels. Thus, the AAV-dCAS approach might enable an alternative route for clinical therapies of Parkinson's disease.


Assuntos
Doença de Parkinson , Animais , Astrócitos , Corpo Estriado , Dopamina , Neurônios Dopaminérgicos , Neurônios GABAérgicos , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/terapia
7.
Neurochem Int ; 150: 105174, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34474098

RESUMO

Morphine can be synthesized endogenously by mammals from dopamine via the intermediate norlaudanosoline. Previously, both compounds have been detected separately in whole brains of mice and brain regions of rats, and in urine of humans. Here, we report a novel method for the analysis of both compounds in single murine brain regions. Initially, a variant of dispersive liquid-liquid microextraction was established by using methanol as an extractant, cyclohexane as solvent, and tributylphosphate as disperser. The extraction method was applied to murine brain regions homogenized with perchloric acid while the subsequent detection was carried out by HPLC with electrochemical detection. In the thalamus of C57Bl/6J mice (n = 3, male, age 4-8 months), morphine and norlaudanosoline could be detected at levels of 19 ± 3.9 and 7.2 ± 2.3 pg/mg, respectively. Overall, we provide a novel method for the simultaneous extraction and detection of both morphine and norlaudanosoline in single murine brain regions.


Assuntos
Química Encefálica , Técnicas Eletroquímicas/métodos , Microextração em Fase Líquida/métodos , Morfina/análise , Tetra-Hidropapaverolina/análise , Animais , Encéfalo/metabolismo , Química Encefálica/fisiologia , Cromatografia Líquida/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/metabolismo , Tetra-Hidropapaverolina/metabolismo
8.
Int J Radiat Biol ; 97(2): 156-169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33264576

RESUMO

PURPOSE: The increasing use of low-dose ionizing radiation in medicine requires a systematic study of its long-term effects on the brain, behaviour and its possible association with neurodegenerative disease vulnerability. Therefore, we analysed the long-term effects of a single low-dose irradiation exposure at 10 weeks of age compared to medium and higher doses on locomotor, emotion-related and sensorimotor behaviour in mice as well as on hippocampal glial cell populations. MATERIALS AND METHODS: We determined the influence of radiation dose (0, 0.063, 0.125 or 0.5 Gy), time post-irradiation (4, 12 and 18 months p.i.), sex and genotype (wild type versus mice with Ercc2 DNA repair gene point mutation) on behaviour. RESULTS: The high dose (0.5 Gy) had early-onset adverse effects at 4 months p.i. on sensorimotor recruitment and late-onset negative locomotor effects at 12 and 18 months p.i. Notably, the low dose (0.063 Gy) produced no early effects but subtle late-onset (18 months) protective effects on sensorimotor recruitment and exploratory behaviour. Quantification and morphological characterization of the microglial and the astrocytic cells of the dentate gyrus 24 months p.i. indicated heightened immune activity after high dose irradiation (0.125 and 0.5 Gy) while conversely, low dose (0.063 Gy) induced more neuroprotective features. CONCLUSION: This is one of the first studies demonstrating such long-term and late-onset effects on brain and behaviour after a single radiation event in adulthood.


Assuntos
Comportamento Animal/efeitos da radiação , Neuroglia/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Feminino , Hipocampo/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos da radiação , Irradiação Corporal Total , Proteína Grupo D do Xeroderma Pigmentoso/genética
9.
iScience ; 23(12): 101797, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33299968

RESUMO

PINK1 loss-of-function mutations cause early onset Parkinson disease. PINK1-Parkin mediated mitophagy has been well studied, but the relevance of the endogenous process in the brain is debated. Here, the absence of PINK1 in human dopaminergic neurons inhibits ionophore-induced mitophagy and reduces mitochondrial membrane potential. Compensatory, mitochondrial renewal maintains mitochondrial morphology and protects the respiratory chain. This is paralleled by metabolic changes, including inhibition of the TCA cycle enzyme mAconitase, accumulation of NAD+, and metabolite depletion. Loss of PINK1 disrupts dopamine metabolism by critically affecting its synthesis and uptake. The mechanism involves steering of key amino acids toward energy production rather than neurotransmitter metabolism and involves cofactors related to the vitamin B6 salvage pathway identified using unbiased multi-omics approaches. We propose that reduction of mitochondrial membrane potential that cannot be controlled by PINK1 signaling initiates metabolic compensation that has neurometabolic consequences relevant to Parkinson disease.

10.
Sci Transl Med ; 12(560)2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908004

RESUMO

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the disease. Using a patient-based in vitro model of PARK7-linked PD, we identified a U1-dependent splicing defect causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells and differentiated neurons. After prioritization of candidate drugs, we identified and validated a combinatorial treatment with the small-molecule compounds rectifier of aberrant splicing (RECTAS) and phenylbutyric acid, which restored DJ-1 protein and mitochondrial dysfunction in patient-derived fibroblasts as well as dopaminergic neuronal cell loss in mutant midbrain organoids. Our analysis of a large number of exomes revealed that U1 splice-site mutations were enriched in sporadic PD patients. Therefore, our study suggests an alternative strategy to restore cellular abnormalities in in vitro models of PD and provides a proof of concept for neuroprotection based on precision medicine strategies in PD.


Assuntos
Doença de Parkinson , Neurônios Dopaminérgicos , Éxons/genética , Humanos , Mutação/genética , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Splicing de RNA
11.
EMBO J ; 39(21): e104472, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32929771

RESUMO

In adult hippocampal neurogenesis, stem/progenitor cells generate dentate granule neurons that contribute to hippocampal plasticity. The establishment of a morphologically defined dendritic arbor is central to the functional integration of adult-born neurons. We investigated the role of canonical Wnt/ß-catenin signaling in dendritogenesis of adult-born neurons. We show that canonical Wnt signaling follows a biphasic pattern, with high activity in stem/progenitor cells, attenuation in immature neurons, and reactivation during maturation, and demonstrate that this activity pattern is required for proper dendrite development. Increasing ß-catenin signaling in maturing neurons of young adult mice transiently accelerated dendritic growth, but eventually produced dendritic defects and excessive spine numbers. In middle-aged mice, in which protracted dendrite and spine development were paralleled by lower canonical Wnt signaling activity, enhancement of ß-catenin signaling restored dendritic growth and spine formation to levels observed in young adult animals. Our data indicate that precise timing and strength of ß-catenin signaling are essential for the correct functional integration of adult-born neurons and suggest Wnt/ß-catenin signaling as a pathway to ameliorate deficits in adult neurogenesis during aging.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , beta Catenina/metabolismo , Envelhecimento/metabolismo , Animais , Proteína Axina/genética , Feminino , Hipocampo/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Via de Sinalização Wnt , beta Catenina/genética
12.
Sci Rep ; 9(1): 4515, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872638

RESUMO

Mutations within Leucine-rich repeat kinase 2 (LRRK2) are associated with late-onset Parkinson's disease. The physiological function of LRRK2 and molecular mechanism underlying the pathogenic role of LRRK2 mutations remain uncertain. Here, we investigated the role of LRRK2 in intracellular signal transduction. We find that deficiency of Lrrk2 in rodents affects insulin-dependent translocation of glucose transporter type 4 (GLUT4). This deficit is restored during aging by prolonged insulin-dependent activation of protein kinase B (PKB, Akt) and Akt substrate of 160 kDa (AS160), and is compensated by elevated basal expression of GLUT4 on the cell surface. Furthermore, we find a crucial role of Rab10 phosphorylation by LRRK2 for efficient insulin signal transduction. Translating our findings into human cell lines, we find comparable molecular alterations in fibroblasts from Parkinson's patients with the known pathogenic G2019S LRRK2 mutation. Our results highlight the role of LRRK2 in insulin-dependent signalling with potential therapeutic implications.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Crescimento Neuronal/efeitos dos fármacos , Doença de Parkinson/metabolismo , Fosforilação , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas rab de Ligação ao GTP/metabolismo
13.
Nat Commun ; 9(1): 2929, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050033

RESUMO

Genetic, epigenetic, and environmental factors contribute to the multifactorial disorder progressive supranuclear palsy (PSP). Here, we study epigenetic changes by genome-wide analysis of DNA from postmortem tissue of forebrains of patients and controls and detect significant (P < 0.05) methylation differences at 717 CpG sites in PSP vs. controls. Four-hundred fifty-one of these sites are associated with protein-coding genes. While differential methylation only affects a few sites in most genes, DLX1 is hypermethylated at multiple sites. Expression of an antisense transcript of DLX1, DLX1AS, is reduced in PSP brains. The amount of DLX1 protein is increased in gray matter of PSP forebrains. Pathway analysis suggests that DLX1 influences MAPT-encoded Tau protein. In a cell system, overexpression of DLX1 results in downregulation of MAPT while overexpression of DLX1AS causes upregulation of MAPT. Our observations suggest that altered DLX1 methylation and expression contribute to pathogenesis of PSP by influencing MAPT.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Proteínas de Homeodomínio/metabolismo , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/patologia , Fatores de Transcrição/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Proteínas de Homeodomínio/genética , Humanos , Masculino , Fatores de Transcrição/genética , Proteínas tau/genética , Proteínas tau/metabolismo
14.
J Chromatogr A ; 1534: 85-92, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29307529

RESUMO

The transplacental passage of thyroid hormones (THs) is of great significance since the maternal THs are vitally important in ensuring the normal fetal development. In this paper, we determined the concentrations of seven THs, viz. L-thyroxine (T4), 3,3',5-triiodo-l-thyronine (T3), 3,3',5'-triiodo-l-thyronine (rT3), 3,3'-diiodo-l-thyronine (T2), 3,5-diiodo-l-thyronine (rT2), 3-iodo-l-thyronine (T1) and 3-iodothyronamine (T1AM), in placenta using isotope dilution liquid chromatography quadrupole time-of-flight mass spectrometry. We optimized the method using isotopically labeled quantification standards (13C6-T4, 13C6-T3, 13C6-rT3 and 13C6-T2) and recovery standard (13C12-T4) in combination with solid-liquid extraction, liquid-liquid extraction and solid phase extraction. The linearity was obtained in the range of 0.5-150 pg uL-1 with R2 values >0.99. The method detection limits (MDLs) ranged from 0.01 ng g-1 to 0.2 ng g-1, while the method quantification limits (MQLs) were between 0.04 ng g-1 and 0.7 ng g-1. The spike-recoveries for THs (except for T1 and T1AM) were in the range of 81.0%-112%, with a coefficient of variation (CV) of 0.5-6.2%. The intra-day CVs and inter-day CVs were 0.5%-10.3% and 1.19%-8.88%, respectively. Concentrations of the THs were 22.9-35.0 ng g-1 T4, 0.32-0.46 ng g-1 T3, 2.86-3.69 ng g-1 rT3, 0.16-0.26 ng g-1 T2, and < MDL for other THs in five human placentas, and 2.05-3.51 ng g-1 T4, 0.37-0.62 ng g-1 T3, 0.96-1.3 ng g-1 rT3, 0.07-0.13 ng g-1 T2 and < MDL for other THs in five mouse placentas. The presence of T2 was tracked in placenta for the first time. This method with improved selectivity and sensitivity allows comprehensive evaluation of TH homeostasis in research of metabolism and effects of environmental contaminant exposures.


Assuntos
Cromatografia Líquida , Isótopos/análise , Espectrometria de Massas , Placenta/química , Hormônios Tireóideos/análise , Animais , Di-Iodotironinas , Feminino , Humanos , Marcação por Isótopo , Limite de Detecção , Extração Líquido-Líquido , Camundongos , Gravidez , Padrões de Referência , Extração em Fase Sólida , Tiroxina/análise , Tri-Iodotironina
15.
J Neurosci Methods ; 300: 77-91, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28483715

RESUMO

BACKGROUND: Generation and phenotyping of mutant mouse models continues to increase along with the search for the most efficient phenotyping tests. Here we asked if a combination of different locomotor tests is necessary for comprehensive locomotor phenotyping, or if a large data set from an automated gait analysis with the CatWalk system would suffice. NEW METHOD: First we endeavored to meaningfully reduce the large CatWalk data set by Principal Component Analysis (PCA) to decide on the most relevant parameters. We analyzed the influence of sex, body weight, genetic background and age. Then a combination of different locomotor tests was analyzed to investigate the possibility of redundancy between tests. RESULT: The extracted 10 components describe 80% of the total variance in the CatWalk, characterizing different aspects of gait. With these, effects of CatWalk version, sex, body weight, age and genetic background were detected. In addition, the PCA on a combination of locomotor tests suggests that these are independent without significant redundancy in their locomotor measures. COMPARISON WITH EXISTING METHODS: The PCA has permitted the refinement of the highly dimensional CatWalk (and other tests) data set for the extraction of individual component scores and subsequent analysis. CONCLUSION: The outcome of the PCA suggests the possibility to focus on measures of the front and hind paws, and one measure of coordination in future experiments to detect phenotypic differences. Furthermore, although the CatWalk is sensitive for detecting locomotor phenotypes pertaining to gait, it is necessary to include other tests for comprehensive locomotor phenotyping.


Assuntos
Comportamento Animal/fisiologia , Pesquisa Comportamental/métodos , Análise da Marcha/métodos , Locomoção/fisiologia , Animais , Feminino , Genótipo , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Análise de Componente Principal
16.
Neuroscience ; 357: 241-254, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28627418

RESUMO

Elevated levels of oxidative stress and neuronal inflammation in the hypothalamus or ventral midbrain, respectively, represent common denominators for obesity and Parkinson's Disease (PD). However, little is known about defense mechanisms that protect neurons in these regions from oxidative damage. Here, we aimed to assess whether murine Gpx4, a crucial antioxidant enzyme that protects neurons from membrane damage and ferroptosis, is critical for the protection from neuronal inflammation in two distinct pathophysiologic diseases, namely metabolic dysfunction in diet-induced obesity or PD. Gpx4 was deleted from either AgRP or POMC neurons in the hypothalamus, essential for metabolic homeostasis, or from dopaminergic neurons in the ventral midbrain, governing behaviors such as anxiety or voluntary movement. To induce a pro-inflammatory environment, AgRP and POMC neuron-specific Gpx4 knockout mice were subjected to high-fat high-sucrose (HFHS) diet. To exacerbate oxidative stress in dopaminergic neurons of the ventral midbrain, we systemically co-deleted the PD-related gene DJ-1. Gpx4 was dispensable for the maintenance of cellular health and function of POMC neurons, even in mice exposed to obesogenic conditions. In contrast, HFHS-fed mice with Gpx4 deletion from AgRP neurons displayed increased body adiposity. Gpx4 expression and activity were diminished in the hypothalamus of HFHS-fed mice compared to standard diet-fed controls. Gpx4 deletion from dopaminergic neurons induced anxiety behavior, and diminished spontaneous locomotor activity when DJ-1 was co-deleted. Overall, these data suggest a physiological role for Gpx4 in balancing metabolic control signals and inflammation in AgRP but not POMC neurons. Moreover, Gpx4 appears to constitute an important rheostat against neuronal dysfunction and PD-like symptoms in dopaminergic circuitry within the ventral midbrain.


Assuntos
Ansiedade/enzimologia , Peso Corporal/fisiologia , Glutationa Peroxidase/deficiência , Atividade Motora/fisiologia , Obesidade/enzimologia , Transtornos Parkinsonianos/enzimologia , Adiposidade/fisiologia , Animais , Ansiedade/imunologia , Ansiedade/patologia , Comportamento Animal/fisiologia , Dieta Hiperlipídica , Sacarose Alimentar , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/patologia , Feminino , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Hipotálamo/enzimologia , Hipotálamo/imunologia , Hipotálamo/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/patologia , Estresse Oxidativo/fisiologia , Transtornos Parkinsonianos/imunologia , Transtornos Parkinsonianos/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Caracteres Sexuais , Glutationa Peroxidase GPX1
17.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1033-1034: 413-420, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27649501

RESUMO

Thyroid hormones (THs) play a critical role in the regulation of many biological processes such as growth, metabolism and development both in humans and wildlife. In general, TH levels are measured by immunoassay (IA) methods but the specificity of the antibodies used in these assays limits selectivity. In the last decade, several analytical methods using liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) have been developed to measure THs. These new techniques proved to be more accurate than the IA analysis and they were widely used for the determination of TH level in different human and animal tissues. A large part of LC-MS/MS methods described in literature employed between 200 and 500mg of sample, however this quantity can be considered too high especially when preclinical studies are conducted using mice as test subjects. Thus an analytical method that reduces the amount of tissue is essential. In this study, we developed a procedure for the analysis of six THs; L-thyroxine (T4), 3,3',5-triiodo-l-thyronine (T3), 3,3',5'-triiodo-l-thyronine (rT3), 3,5-diiodo-l-thyronine (rT2), 3,3'-diiodo-l-thyronine (T2), 3-iodo-l-thyronine (T1) using isotope ((13)C6-T4, (13)C6-T3, (13)C6-rT3, (13)C6-T2) dilution liquid chromatography-mass spectrometry. The major difference with previously described methods lies in the utilization of a nano-UPLC (Ultra Performance Liquid Chromatography) system in micro configuration. This approach leads to a reduction compared to the published methods, of column internal diameter, flow rate, and injected volume. The result of all these improvements is a decrease in the amount of sample necessary for the analysis. The method was tested on six different mouse tissues: liver, heart, kidney, muscle, lung and brown adipose tissue (BAT). The nano-UPLC system was interfaced with a quadrupole time-of-flight mass spectrometer (Q-TOF2-MS) using the positive ion mode electrospray ionization. In our analytical method the instrumental calibration curves were constructed from 0 to 100pgµL(-1) and all of them showed good linearity (r(2)>0.99). The limit of quantification was from 2.5 to 5pg injected into the column. The method recoveries calculated using spiked mouse liver and spiked mouse muscle were between 83% and 118% (except T1 and rT2 at high concentration) with a coefficient of variation (CV) of <10% for all derivatives. The new methodology allows us to measure T4 and T3 concentrations in a range from 21 to about 100mg and give a more extensive insight on thyroid hormone concentration in different mouse tissue.


Assuntos
Cromatografia Líquida/métodos , Marcação por Isótopo/métodos , Espectrometria de Massas em Tandem/métodos , Hormônios Tireóideos/análise , Animais , Limite de Detecção , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Padrões de Referência , Soluções , Hormônios Tireóideos/química
18.
J Neurochem ; 139 Suppl 1: 8-26, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27206718

RESUMO

Dopaminergic neurons in the ventral mesencephalon (the ventral mesencephalic dopaminergic complex) are known for their role in a multitude of behaviors, including cognition, reward, addiction and voluntary movement. Dysfunctions of these neurons are the underlying cause of various neuropsychiatric disorders, such as depression, addiction and schizophrenia. In addition, Parkinson's disease (PD), which is the second most common degenerative disease in developed countries, is characterized by the degeneration of dopaminergic neurons, leading to the core motor symptoms of the disease. However, only a subset of dopaminergic neurons in the ventral mesencephalon is highly vulnerable to the disease process. Indeed, research over several decades revealed that the neurons in the ventral mesencephalic dopaminergic complex do not form a homogeneous group with respect to anatomy, physiology, function, molecular identity or vulnerability/dysfunction in different diseases. Here, we review how the concept of dopaminergic neuron diversity, assisted by the advent and application of new technologies, evolved and was refined over time and how it shaped our understanding of PD pathogenesis. Understanding this diversity of neurons in the ventral mesencephalic dopaminergic complex at all levels is imperative for the development of new and more selective drugs for both PD and various other neuropsychiatric diseases. Several decades of research revealed that the neurons in the ventral mesencephalic dopaminergic complex do not form a homogeneous group in respect to anatomy, physiology, function, molecular identity or vulnerability/dysfunction in diseases like Parkinson's disease (PD). Here, we review how this concept evolved and was refined over time and how it shaped our understanding of the pathogenesis of PD. Source of the midbrain image: www.wikimd.org/wiki/index.php/The_Midbrain_or_Mesencephalon; downloaded 28.01.2016. See also Figures and of the paper. This article is part of a special issue on Parkinson disease.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Animais , Humanos , Mesencéfalo/anatomia & histologia , Vias Neurais/anatomia & histologia , Vias Neurais/metabolismo , Vias Neurais/patologia
19.
Front Behav Neurosci ; 9: 302, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617501

RESUMO

Adult neurogenesis occurs in the adult mammalian subventricular zone (SVZ) along the walls of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus. While a burgeoning body of research implicates adult neurogenesis in olfactory bulb (OB)- and hippocampal-related behaviors, the precise function continues to elude. To further assess the behavioral importance of adult neurogenesis, we herein generated a novel inducible transgenic mouse model of adult neurogenesis reduction where mice with CreER(T2) under doublecortin (DCX) promoter control were crossed with mice where diphtheria toxin A (DTA) was driven by the Rosa26 promoter. Activation of DTA, through the administration of tamoxifen (TAM), results in a specific reduction of DCX+ immature neurons in both the hippocampal dentate gyrus and OB. We show that the decrease of DCX+ cells causes impaired social discrimination ability in both young adult (from 3 months) and middle aged (from 10 months) mice. Furthermore, these animals showed an age-independent altered coping behavior in the Forced Swim Test without clear changes in anxiety-related behavior. Notably, these behavior changes were reversible on repopulating the neurogenic zones with DCX+ cells on cessation of the TAM treatment, demonstrating the specificity of this effect. Overall, these results support the notion that adult neurogenesis plays a role in social memory and in stress coping but not necessarily in anxiety-related behavior.

20.
Neurobiol Dis ; 82: 32-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26049140

RESUMO

The protracted and age-dependent degeneration of dopamine (DA)-producing neurons of the Substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) in the mammalian midbrain is a hallmark of human Parkinson's Disease (PD) and of certain genetic mouse models of PD, such as mice heterozygous for the homeodomain transcription factor Engrailed 1 (En1(+/-) mice). Neurotoxin-based animal models of PD, in contrast, are characterized by the fast and partly reversible degeneration of the SNc and VTA DA neurons. The secreted protein WNT1 was previously shown to be strongly induced in the neurotoxin-injured adult ventral midbrain (VM), and to protect the SNc and VTA DA neurons from cell death in this context. We demonstrate here that the sustained and ectopic expression of Wnt1 in the SNc and VTA DA neurons of En1(+/Wnt1) mice also protected these genetically affected En1 heterozygote (En1(+/-)) neurons from their premature degeneration in the adult mouse VM. We identified a developmental gene cascade that is up-regulated in the adult En1(+/Wnt1) VM, including the direct WNT1/ß-catenin signaling targets Lef1, Lmx1a, Fgf20 and Dkk3, as well as the indirect targets Pitx3 (activated by LMX1A) and Bdnf (activated by PITX3). We also show that the secreted neurotrophin BDNF and the secreted WNT modulator DKK3, but not the secreted growth factor FGF20, increased the survival of En1 mutant dopaminergic neurons in vitro. The WNT1-mediated signaling pathway and its downstream targets BDNF and DKK3 might thus provide a useful means to treat certain genetic and environmental (neurotoxic) forms of human PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Degeneração Neural/genética , Transdução de Sinais/genética , Proteína Wnt1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/genética , Neurônios Dopaminérgicos/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Transgênicos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Regulação para Cima , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA