Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37398362

RESUMO

Background: RNA-Seq has brought forth significant discoveries regarding aberrations in RNA processing, implicating these RNA variants in a variety of diseases. Aberrant splicing and single nucleotide variants in RNA have been demonstrated to alter transcript stability, localization, and function. In particular, the upregulation of ADAR, an enzyme which mediates adenosine-to-inosine editing, has been previously linked to an increase in the invasiveness of lung ADC cells and associated with splicing regulation. Despite the functional importance of studying splicing and SNVs, short read RNA-Seq has limited the community's ability to interrogate both forms of RNA variation simultaneously. Results: We employed long-read technology to obtain full-length transcript sequences, elucidating cis-effects of variants on splicing changes at a single molecule level. We have developed a computational workflow that augments FLAIR, a tool that calls isoform models expressed in long-read data, to integrate RNA variant calls with the associated isoforms that bear them. We generated nanopore data with high sequence accuracy of H1975 lung adenocarcinoma cells with and without knockdown of ADAR. We applied our workflow to identify key inosine-isoform associations to help clarify the prominence of ADAR in tumorigenesis. Conclusions: Ultimately, we find that a long-read approach provides valuable insight toward characterizing the relationship between RNA variants and splicing patterns.

2.
Genome Biol ; 24(1): 167, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461039

RESUMO

In this manuscript, we introduce and benchmark Mandalorion v4.1 for the identification and quantification of full-length transcriptome sequencing reads. It further improves upon the already strong performance of Mandalorion v3.6 used in the LRGASP consortium challenge. By processing real and simulated data, we show three main features of Mandalorion: first, Mandalorion-based isoform identification has very high precision and maintains high recall even in the absence of any genome annotation. Second, isoform read counts as quantified by Mandalorion show a high correlation with simulated read counts. Third, isoforms identified by Mandalorion closely reflect the full-length transcriptome sequencing data sets they are based on.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma , Isoformas de Proteínas/genética , Perfilação da Expressão Gênica , Análise de Sequência de RNA
3.
Genome Biol ; 23(1): 47, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130954

RESUMO

High-throughput single-cell analysis today is facilitated by protocols like the 10X Genomics platform or Drop-Seq which generate cDNA pools in which the origin of a transcript is encoded at its 5' or 3' end. Here, we used R2C2 to sequence and demultiplex 12 million full-length cDNA molecules generated by the 10X Genomics platform from ~3000 peripheral blood mononuclear cells. We use these reads, independent from Illumina data, to identify B cell, T cell, and monocyte clusters and generate isoform-level transcriptomes for cells and cell types. Finally, we extract paired adaptive immune receptor sequences unique to each T and B cell.


Assuntos
Leucócitos Mononucleares , Análise de Célula Única , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Isoformas de Proteínas/genética , Análise de Sequência de RNA/métodos
4.
Genome Res ; 30(4): 589-601, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32312742

RESUMO

The human immune system relies on highly complex and diverse transcripts and the proteins they encode. These include transcripts encoding human leukocyte antigen (HLA) receptors as well as B cell and T cell receptors (BCR and TCR). Determining which alleles an individual possesses for each HLA gene (high-resolution HLA typing) is essential to establish donor-recipient compatibility in organ and bone marrow transplantations. In turn, the repertoires of millions of unique BCR and TCR transcripts in each individual carry a vast amount of health-relevant information. Both short-read RNA-seq-based HLA typing and BCR/TCR repertoire sequencing (AIRR-seq) currently rely on our incomplete knowledge of the genetic diversity at HLA and BCR/TCR loci. Here, we generated over 10,000,000 full-length cDNA sequences at a median accuracy of 97.9% using our nanopore sequencing-based Rolling Circle Amplification to Concatemeric Consensus (R2C2) protocol. We used this data set to (1) show that deep and accurate full-length cDNA sequencing can be used to provide isoform-level transcriptome analysis for more than 9000 loci, (2) generate accurate sequences of HLA alleles, and (3) extract detailed AIRR data for the analysis of the adaptive immune system. The HLA and AIRR analysis approaches we introduce here are untargeted and therefore do not require prior knowledge of the composition or genetic diversity of HLA and BCR/TCR loci.


Assuntos
DNA Complementar , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Transcriptoma , Alelos , Processamento Alternativo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Teste de Histocompatibilidade , Humanos , Masculino , Mutação , Receptores Imunológicos
5.
Philos Trans R Soc Lond B Biol Sci ; 374(1786): 20190097, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31587638

RESUMO

Long-read sequencing holds great potential for transcriptome analysis because it offers researchers an affordable method to annotate the transcriptomes of non-model organisms. This, in turn, will greatly benefit future work on less-researched organisms like unicellular eukaryotes that cannot rely on large consortia to generate these transcriptome annotations. However, to realize this potential, several remaining molecular and computational challenges will have to be overcome. In this review, we have outlined the limitations of short-read sequencing technology and how long-read sequencing technology overcomes these limitations. We have also highlighted the unique challenges still present for long-read sequencing technology and provided some suggestions on how to overcome these challenges going forward. This article is part of a discussion meeting issue 'Single cell ecology'.


Assuntos
Eucariotos/genética , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Transcriptoma
6.
Front Genet ; 10: 643, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379921

RESUMO

Transcriptome studies evaluating whole blood and tissues are often confounded by overrepresentation of highly abundant transcripts. These abundant transcripts are problematic, as they compete with and prevent the detection of rare RNA transcripts, obscuring their biological importance. This issue is more pronounced when using long-read sequencing technologies for isoform-level transcriptome analysis, as they have relatively lower throughput compared to short-read sequencers. As a result, long-read based transcriptome analysis is prohibitively expensive for non-model organisms. While there are off-the-shelf kits available for select model organisms capable of depleting highly abundant transcripts for alpha (HBA) and beta (HBB) hemoglobin, they are unsuitable for non-model organisms. To address this, we have adapted the recent CRISPR/Cas9-based depletion method (depletion of abundant sequences by hybridization) for long-read full-length cDNA sequencing approaches that we call Long-DASH. Using a recombinant Cas9 protein with appropriate guide RNAs, full-length hemoglobin transcripts can be depleted in vitro prior to performing any short- and long-read sequencing library preparations. Using this method, we sequenced depleted full-length cDNA in parallel using both our Oxford Nanopore Technology (ONT) based R2C2 long-read approach, as well as the Illumina short-read based Smart-seq2 approach. To showcase this, we have applied our methods to create an isoform-level transcriptome from whole blood samples derived from three polar bears (Ursus maritimus). Using Long-DASH, we succeeded in depleting hemoglobin transcripts and generated deep Smart-seq2 Illumina datasets and 3.8 million R2C2 full-length cDNA consensus reads. Applying Long-DASH with our isoform identification pipeline, Mandalorion, we discovered ∼6,000 high-confidence isoforms and a number of novel genes. This indicates that there is a high diversity of gene isoforms within U. maritimus not yet reported. This reproducible and straightforward approach has not only improved the polar bear transcriptome annotations but will serve as the foundation for future efforts to investigate transcriptional dynamics within the 19 polar bear subpopulations around the Arctic.

7.
Proc Natl Acad Sci U S A ; 115(39): 9726-9731, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30201725

RESUMO

High-throughput short-read sequencing has revolutionized how transcriptomes are quantified and annotated. However, while Illumina short-read sequencers can be used to analyze entire transcriptomes down to the level of individual splicing events with great accuracy, they fall short of analyzing how these individual events are combined into complete RNA transcript isoforms. Because of this shortfall, long-distance information is required to complement short-read sequencing to analyze transcriptomes on the level of full-length RNA transcript isoforms. While long-read sequencing technology can provide this long-distance information, there are issues with both Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) long-read sequencing technologies that prevent their widespread adoption. Briefly, PacBio sequencers produce low numbers of reads with high accuracy, while ONT sequencers produce higher numbers of reads with lower accuracy. Here, we introduce and validate a long-read ONT-based sequencing method. At the same cost, our Rolling Circle Amplification to Concatemeric Consensus (R2C2) method generates more accurate reads of full-length RNA transcript isoforms than any other available long-read sequencing method. These reads can then be used to generate isoform-level transcriptomes for both genome annotation and differential expression analysis in bulk or single-cell samples.


Assuntos
DNA Complementar/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos , Linfócitos B/metabolismo , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Isoformas de RNA/genética , Reprodutibilidade dos Testes
8.
J Immunol ; 196(6): 2902-7, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26856699

RESUMO

Ab repertoire sequencing is a powerful tool to analyze the adaptive immune system. To sequence entire Ab repertoires, amplicons are created from Ab H chain (IgH) transcripts and sequenced on a high-throughput sequencer. The field of immune repertoire sequencing is growing rapidly and the protocols used are steadily improving; however, thus far, immune repertoire sequencing protocols have not been able to sequence full-length immune repertoires including the entire IgH V region and enough of the IgH C region to identify isotype subtypes. In this study, we present a method that combines Tn5 transposase and molecular identifiers for the highly accurate sequencing of amplicons >500 bp using Illumina short read paired-end sequencing. We then apply this method to Ab H chain amplicons to sequence the first, to our knowledge, highly accurate full-length immune repertoire.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Cadeias Pesadas de Imunoglobulinas/genética , Isotipos de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Transposases/metabolismo , Imunidade Adaptativa/genética , Diversidade de Anticorpos , Humanos , Imunidade Humoral/genética , Leucócitos Mononucleares/fisiologia , Técnicas de Amplificação de Ácido Nucleico , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA