Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 805, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961245

RESUMO

Precise epitope determination of therapeutic antibodies is of great value as it allows for further comprehension of mechanism of action, therapeutic responsiveness prediction, avoidance of unwanted cross reactivity, and vaccine design. The golden standard for discontinuous epitope determination is the laborious X-ray crystallography method. Here, we present a combinatorial method for rapid mapping of discontinuous epitopes by mammalian antigen display, eliminating the need for protein expression and purification. The method is facilitated by automated workflows and tailored software for antigen analysis and oligonucleotide design. These oligos are used in automated mutagenesis to generate an antigen receptor library displayed on mammalian cells for direct binding analysis by flow cytometry. Through automated analysis of 33930 primers an optimized single condition cloning reaction was defined allowing for mutation of all surface-exposed residues of the receptor binding domain of SARS-CoV-2. All variants were functionally expressed, and two reference binders validated the method. Furthermore, epitopes of three novel therapeutic antibodies were successfully determined followed by evaluation of binding also towards SARS-CoV-2 Omicron BA.2. We find the method to be highly relevant for rapid construction of antigen libraries and determination of antibody epitopes, especially for the development of therapeutic interventions against novel pathogens.


Assuntos
COVID-19 , Mapeamento de Epitopos , Epitopos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Mapeamento de Epitopos/métodos , Epitopos/imunologia , Epitopos/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/imunologia , COVID-19/virologia , Biblioteca de Peptídeos , Anticorpos Antivirais/imunologia , Animais , Células HEK293 , Técnicas de Visualização da Superfície Celular/métodos , Biblioteca Gênica
2.
Metab Eng ; 81: 157-166, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081506

RESUMO

Rare diseases are, despite their name, collectively common and millions of people are affected daily of conditions where treatment often is unavailable. Sulfatases are a large family of activating enzymes related to several of these diseases. Heritable genetic variations in sulfatases may lead to impaired activity and a reduced macromolecular breakdown within the lysosome, with several severe and lethal conditions as a consequence. While therapeutic options are scarce, treatment for some sulfatase deficiencies by recombinant enzyme replacement are available. The recombinant production of such sulfatases suffers greatly from both low product activity and yield, further limiting accessibility for patient groups. To mitigate the low product activity, we have investigated cellular properties through computational evaluation of cultures with varying media conditions and comparison of two CHO clones with different levels of one active sulfatase variant. Transcriptome analysis identified 18 genes in secretory pathways correlating with increased sulfatase production. Experimental validation by upregulation of a set of three key genes improved the specific enzymatic activity at varying degree up to 150-fold in another sulfatase variant, broadcasting general production benefits. We also identified a correlation between product mRNA levels and sulfatase activity that generated an increase in sulfatase activity when expressed with a weaker promoter. Furthermore, we suggest that our proposed workflow for resolving bottlenecks in cellular machineries, to be useful for improvements of cell factories for other biologics as well.


Assuntos
Sulfatases , Humanos , Sulfatases/genética , Sulfatases/metabolismo
3.
Metab Eng ; 72: 171-187, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35301123

RESUMO

Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify metabolic engineering targets limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant expression. In an expression comparison of 24 difficult to express proteins, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293. Guided by a comprehensive transcriptomics comparison between cell lines, especially highlighting differences in secretory pathway utilization, a co-expression screening of 21 secretory pathway components validated ATF4, SRP9, JUN, PDIA3 and HSPA8 as productivity boosters in CHO. Moreover, more heavily glycosylated products benefitted more from the elevated activities of the N- and O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of HEK293 for expression rescue of human proteins and suggest a methodology for identification of secretory pathway components for metabolic engineering of HEK293 and CHO.


Assuntos
Via Secretória , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Proteínas Recombinantes , Via Secretória/genética
4.
N Biotechnol ; 68: 68-76, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35123066

RESUMO

Aggregation of therapeutic bispecific antibodies negatively affects the yield, shelf-life, efficacy and safety of these products. Pairs of stable Chinese hamster ovary (CHO) cell lines produced two difficult-to-express bispecific antibodies with different levels of aggregated product (10-75% aggregate) in a miniaturised bioreactor system. Here, transcriptome analysis was used to interpret the biological causes for the aggregation and to identify strategies to improve product yield and quality. Differential expression- and gene set analysis revealed upregulated proteasomal degradation, unfolded protein response and autophagy processes to be correlated with reduced protein aggregation. Fourteen candidate genes with the potential to reduce aggregation were co-expressed in the stable clones for validation. Of these, HSP90B1, DDIT3, AKT1S1, and ATG16L1, were found to significantly lower aggregation in the stable producers and two (HSP90B1 and DNAJC3) increased titres of the anti-HER2 monoclonal antibody trastuzumab by 50% during transient expression. It is suggested that this approach could be of general use for defining aggregation bottlenecks in CHO cells.


Assuntos
Anticorpos Biespecíficos , Animais , Anticorpos Biespecíficos/metabolismo , Autofagia , Células CHO , Cricetinae , Cricetulus , Biologia de Sistemas
5.
Drugs R D ; 21(2): 157-168, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33721246

RESUMO

BACKGROUND: Monoclonal antibodies (mAbs) have proved to be a valuable tool for the treatment of different cancer types. However, clinical use of an increasing number of mAbs, have also highlighted limitations with monotherapy for cancers, in particular for such with more complex mechanisms, requiring action on additional molecules or pathways, or for cancers quickly acquiring resistance following monotherapy. An example for the latter is the mAb trastuzumab, FDA approved for treatment of metastatic gastric carcinoma. To circumvent this, researchers have reported synergistic, anti-proliferative effects by combination targeting of HER2 and EGFR by trastuzumab and the EGFR-targeting mAb Cetuximab overcoming trastuzumab resistance. METHODS: Maintaining the proven functionality of trastuzumab, we have designed bi-specific antibody molecules, called AffiMabs, by fusing an EGFR-targeting Affibody molecule to trastuzumab's heavy or light chains. Having confirmed binding to EGFR and Her2 and cytotoxicity of our AffiMabs, we analyzed apoptosis rate, receptor surface levels, phosphorylation levels of receptors and associated signaling pathways as well as differentially expressed genes on transcriptome level with the aim to elucidate the mode of action of our AffiMabs. RESULTS: The AffiMabs are able to simultaneously bind HER2 and EGFR and show increased cytotoxic effect compared to the original trastuzumab therapeutic molecule and, more importantly, even to the combination of trastuzumab and EGFR-targeting Affibody molecule. Analyzing the mode of action, we could show that bi-specific AffiMabs lead to reduced surface receptor levels and a downregulation of cell cycle associated genes on transcriptome level. CONCLUSION: Our study shows that transcriptome analysis can be used to validate the choice of receptor targets and guide the design of novel multi-specific molecules. The inherent modularity of the AffiMab format renders it readily applicable to other receptor targets.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Proliferação de Células , Humanos , Trastuzumab/farmacologia
6.
N Biotechnol ; 58: 45-54, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32502629

RESUMO

The proteins secreted by human tissues and blood cells, the secretome, are important both for the basic understanding of human biology and for identification of potential targets for future diagnosis and therapy. Here, a high-throughput mammalian cell factory is presented that was established to create a resource of recombinant full-length proteins covering the majority of those annotated as 'secreted' in humans. The full-length DNA sequences of each of the predicted secreted proteins were generated by gene synthesis, the constructs were transfected into Chinese hamster ovary (CHO) cells and the recombinant proteins were produced, purified and analyzed. Almost 1,300 proteins were successfully generated and proteins predicted to be secreted into the blood were produced with a success rate of 65%, while the success rates for the other categories of secreted proteins were somewhat lower giving an overall one-pass success rate of ca. 58%. The proteins were used to generate targeted proteomics assays and several of the proteins were shown to be active in a phenotypic assay involving pancreatic ß-cell dedifferentiation. Many of the proteins that failed during production in CHO cells could be rescued in human embryonic kidney (HEK 293) cells suggesting that a cell factory of human origin can be an attractive alternative for production in mammalian cells. In conclusion, a high-throughput protein production and purification system has been successfully established to create a unique resource of the human secretome.


Assuntos
Ensaios de Triagem em Larga Escala , Animais , Células CHO , Cricetulus , DNA/biossíntese , DNA/genética , Células HEK293 , Humanos , Proteômica , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo
7.
Sci Signal ; 12(609)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772123

RESUMO

The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immunoassays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood.


Assuntos
Bases de Dados de Proteínas , Proteoma/metabolismo , Proteômica , Humanos
8.
Sci Rep ; 9(1): 310, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670736

RESUMO

Complementation-dependent fluorescence is a powerful way to study co-localization or interactions between biomolecules. A split-GFP variant, involving the self-associating GFP 1-10 and GFP 11, has previously provided a convenient approach to measure recombinant protein titers in cell supernatants. A limitation of this approach is the slow chromophore formation after complementation. Here, we alleviate this lag in signal generation by allowing the GFP 1-10 chromophore to mature on a solid support containing GFP 11 before applying GFP 1-10 in analyses. The pre-maturated GFP 1-10 provided up to 150-fold faster signal generation compared to the non-maturated version. Moreover, pre-maturated GFP 1-10 significantly improved the ability of discriminating between Chinese hamster ovary (CHO) cell lines secreting GFP 11-tagged erythropoietin protein at varying rates. Its improved kinetics make the pre-maturated GFP 1-10 a suitable reporter molecule for cell biology research in general, especially for ranking individual cell lines based on secretion rates of recombinant proteins.


Assuntos
Técnicas Genéticas , Proteínas de Fluorescência Verde/metabolismo , Animais , Células CHO , Cricetulus , Eritropoetina/metabolismo , Genes Reporter , Cinética , Proteínas Luminescentes/metabolismo , Espectrometria de Massas/métodos , Proteínas/metabolismo , Proteínas Recombinantes/metabolismo
9.
Methods Mol Biol ; 1785: 141-157, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29714017

RESUMO

The unique property of specific high affinity binding to more or less any target of interest has made antibodies tremendously useful in numerous applications. Hence, knowledge of the precise binding site (epitope) of antibodies on the target protein is one of the most important features for understanding its performance and determining its reliability in immunoassays. Here, we describe an updated protocol for high-resolution method for mapping epitopes of antibodies based on bacterial surface expression of antigen fragments followed by antibody-based flow cytometric analysis. Epitopes are determined by DNA sequencing of the sorted antibody-binding cells followed by sequence alignment back to the antigen sequence. The method described here has been useful for the mapping of both monoclonal and polyclonal antibodies with varying sizes of epitopes.


Assuntos
Anticorpos Monoclonais/imunologia , Técnicas de Visualização da Superfície Celular/métodos , Mapeamento de Epitopos/métodos , Epitopos/imunologia , Sequência de Aminoácidos/genética , Anticorpos Monoclonais/genética , Bactérias/genética , Bactérias/imunologia , Epitopos/genética , Citometria de Fluxo/métodos , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Biblioteca de Peptídeos
10.
Methods Mol Biol ; 1785: 159-183, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29714018

RESUMO

Knowledge of the exquisite-binding surface of an antibody on its target protein is of great value, in particular for therapeutic antibodies for understanding method of action and for stratification of patients carrying the necessary epitope for desired drug efficacy, but also for capture assays under native conditions. Several epitope mapping methodologies have been described for this purpose, with the laborious X-ray crystallography method being the ideal method for mapping of discontinuous epitopes in antibody-antigen crystal complexes and high-throughput peptide-based methods for mapping of linear epitopes. We here report on the usage of a bacterial surface display-based method for mapping of structural epitopes by display of folded domains on the surface of Gram positive bacteria, followed by domain-targeted mutagenesis and library analysis for the identification of key-residues by flow sorting and sequencing. Identified clones with reduced affinity are validated by single clone FACS and subsequent full-length expression in mammalian cells for validation.


Assuntos
Cristalografia por Raios X/métodos , Mapeamento de Epitopos/métodos , Epitopos/imunologia , Sequência de Aminoácidos/genética , Animais , Especificidade de Anticorpos/imunologia , Bactérias/imunologia , Epitopos/genética , Humanos , Biblioteca de Peptídeos
11.
N Biotechnol ; 45: 80-88, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28778816

RESUMO

Surface display couples genotype with a surface exposed phenotype and thereby allows screening of gene-encoded protein libraries for desired characteristics. Of the various display systems available, phage display is by far the most popular, mainly thanks to its ability to harbour large size libraries. Here, we describe the first use of a Gram-positive bacterial host for display of a library of human antibody genes which, when combined with phage display, provides ease of use for screening, sorting and ranking by flow cytometry. We demonstrate the utility of this method by identifying low nanomolar affinity scFv fragments towards human epidermal growth factor receptor 2 (HER2). The ranking and performance of the scFv isolated by flow sorting in surface-immobilised form was retained when expressed as soluble scFv and analysed by biolayer interferometry, as well as after expression as full-length antibodies in mammalian cells. We also demonstrate the possibility of using Gram-positive bacterial display to directly improve the affinity of the identified binders via an affinity maturation step using random mutagenesis and flow sorting. This combined approach has the potential for a more complete scan of the antibody repertoire and for affinity maturation of human antibody formats.


Assuntos
Anticorpos/metabolismo , Bacteriófagos/metabolismo , Bactérias Gram-Positivas/metabolismo , Anticorpos/genética , Anticorpos/isolamento & purificação , Citometria de Fluxo , Biblioteca Gênica , Humanos
12.
Sci Rep ; 6: 31365, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27509843

RESUMO

The complement component 5 (C5)-binding antibody eculizumab is used to treat patients with paroxysmal nocturnal hemoglobinuria (PNH) and atypical haemolytic uremic syndrome (aHUS). As recently reported there is a need for a precise classification of eculizumab responsive patients to allow for a safe and cost-effective treatment. To allow for such stratification, knowledge of the precise binding site of the drug on its target is crucial. Using a structural epitope mapping strategy based on bacterial surface display, flow cytometric sorting and validation via haemolytic activity testing, we identified six residues essential for binding of eculizumab to C5. This epitope co-localizes with the contact area recently identified by crystallography and includes positions in C5 mutated in non-responders. The identified epitope also includes residue W917, which is unique for human C5 and explains the observed lack of cross-reactivity for eculizumab with other primates. We could demonstrate that Ornithodorus moubata complement inhibitor (OmCI), in contrast to eculizumab, maintained anti-haemolytic function for mutations in any of the six epitope residues, thus representing a possible alternative treatment for patients non-responsive to eculizumab. The method for stratification of patients described here allows for precision medicine and should be applicable to several other diseases and therapeutics.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Complemento C5/química , Complemento C5/genética , Mapeamento de Epitopos/métodos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Complemento C5/metabolismo , Inativadores do Complemento/farmacologia , Cricetulus , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutação , Domínios Proteicos
13.
Methods Mol Biol ; 1131: 485-500, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24515484

RESUMO

The unique property of specific high-affinity binding to more or less any target of interest has made antibodies tremendously useful in numerous applications. Hence knowledge of the precise binding site (epitope) of antibodies on the target protein is one of the most important features for understanding its performance and determining its reliability in immunoassays. Here, we describe a high-resolution method for mapping epitopes of antibodies based on bacterial surface expression of antigen fragments followed by antibody-based flow cytometric sorting. Epitopes are determined by DNA sequencing of the sorted antibody-binding cells followed by sequence alignment back to the antigen sequence. The method described here has been useful for the mapping of both monoclonal and polyclonal antibodies with varying sizes of epitopes.


Assuntos
Anticorpos/imunologia , Mapeamento de Epitopos/métodos , Epitopos/imunologia , Anticorpos Monoclonais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA