Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Acta Physiol (Oxf) ; 240(4): e14126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38517248

RESUMO

AIM: Although of potential biomedical relevance, dipeptide metabolism has hardly been studied. We found the dipeptidase carnosinase-2 (CN2) to be abundant in human proximal tubules, which regulate water and solute homeostasis. We therefore hypothesized, that CN2 has a key metabolic role, impacting proximal tubular transport function. METHODS: A knockout of the CN2 gene (CNDP2-KO) was generated in human proximal tubule cells and characterized by metabolomics, RNA-seq analysis, paracellular permeability analysis and ion transport. RESULTS: CNDP2-KO in human proximal tubule cells resulted in the accumulation of cellular dipeptides, reduction of amino acids and imbalance of related metabolic pathways, and of energy supply. RNA-seq analyses indicated altered protein metabolism and ion transport. Detailed functional studies demonstrated lower CNDP2-KO cell viability and proliferation, and altered ion and macromolecule transport via trans- and paracellular pathways. Regulatory and transport protein abundance was disturbed, either as a consequence of the metabolic imbalance or the resulting functional disequilibrium. CONCLUSION: CN2 function has a major impact on intracellular amino acid and dipeptide metabolism and is essential for key metabolic and regulatory functions of proximal tubular cells. These findings deserve in vivo analysis of the relevance of CN2 for nephron function and regulation of body homeostasis.


Assuntos
Dipeptidases , Humanos , Dipeptidases/genética , Dipeptidases/metabolismo , Dipeptídeos/metabolismo , Túbulos Renais Proximais/metabolismo , Homeostase , Aminoácidos/metabolismo
2.
Mol Metab ; 66: 101644, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36436807

RESUMO

OBJECTIVE: Hyperferremia and hyperferritinemia are observed in patients and disease models of type 2 diabetes mellitus (T2DM). Likewise, patients with genetic iron overload diseases develop diabetes, suggesting a tight link between iron metabolism and diabetes. The liver controls systemic iron homeostasis and is a central organ for T2DM. Here, we investigate how the control of iron metabolism in hepatocytes is affected by T2DM. METHODS: Perls Prussian blue staining was applied to analyze iron distribution in liver biopsies of T2DM patients. To identify molecular mechanisms underlying hepatocyte iron accumulation we established cellular models of insulin resistance by treatment with palmitate and insulin. RESULTS: We show that a subset of T2DM patients accumulates iron in hepatocytes, a finding mirrored in a hepatocyte model of insulin resistance. Iron accumulation can be explained by the repression of the iron exporter ferroportin upon palmitate and/or insulin treatment. While during palmitate treatment the activation of the iron regulatory hormone hepcidin may contribute to reducing ferroportin protein levels in a cell-autonomous manner, insulin treatment decreases ferroportin transcription via the PI3K/AKT and Ras/Raf/MEK/ERK signaling pathways. CONCLUSION: Repression of ferroportin at the transcriptional and post-transcriptional level may contribute to iron accumulation in hepatocytes observed in a subset of patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insulinas , Sobrecarga de Ferro , Humanos , Ferro/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sobrecarga de Ferro/metabolismo , Hepatócitos/metabolismo , Palmitatos/metabolismo , Insulinas/metabolismo
3.
Mol Metab ; 60: 101487, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35378329

RESUMO

OBJECTIVE: Fibrotic organ responses have recently been identified as long-term complications in diabetes. Indeed, insulin resistance and aberrant hepatic lipid accumulation represent driving features of progressive non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis and non-alcoholic steatohepatitis (NASH) to fibrosis. Effective pharmacological regimens to stop progressive liver disease are still lacking to-date. METHODS: Based on our previous discovery of transforming growth factor beta-like stimulated clone (TSC)22D4 as a key driver of insulin resistance and glucose intolerance in obesity and type 2 diabetes, we generated a TSC22D4-hepatocyte specific knockout line (TSC22D4-HepaKO) and exposed mice to control or NASH diet models. Mechanistic insights were generated by metabolic phenotyping and single-nuclei RNA sequencing. RESULTS: Hepatic TSC22D4 expression was significantly correlated with markers of liver disease progression and fibrosis in both murine and human livers. Indeed, hepatic TSC22D4 levels were elevated in human NASH patients as well as in several murine NASH models. Specific genetic deletion of TSC22D4 in hepatocytes led to reduced liver lipid accumulation, improvements in steatosis and inflammation scores and decreased apoptosis in mice fed a lipogenic MCD diet. Single-nuclei RNA sequencing revealed a distinct TSC22D4-dependent gene signature identifying an upregulation of mitochondrial-related processes in hepatocytes upon loss of TSC22D4. An enrichment of genes involved in the TCA cycle, mitochondrial organization, and triglyceride metabolism underscored the hepatocyte-protective phenotype and overall decreased liver damage as seen in mouse models of hepatocyte-selective TSC22D4 loss-of-function. CONCLUSIONS: Together, our data uncover a new connection between targeted depletion of TSC22D4 and intrinsic metabolic processes in progressive liver disease. Hepatocyte-specific reduction of TSC22D4 improves hepatic steatosis and promotes hepatocyte survival via mitochondrial-related mechanisms thus paving the way for targeted therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Diabetes Mellitus Tipo 2/metabolismo , Fibrose , Hepatócitos/metabolismo , Humanos , Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fatores de Transcrição/metabolismo
4.
Diabetes ; 71(5): 1073-1080, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100334

RESUMO

The pdx1-/- zebrafish mutant was recently established as a novel animal model of diabetic retinopathy. In this study, we investigate whether knockout of pdx1 also leads to diabetic kidney disease (DKD). pdx1-/- larvae exhibit several signs of early DKD, such as glomerular hypertrophy, impairments in the filtration barrier corresponding to microalbuminuria, and glomerular basement membrane (GBM) thickening. Adult pdx1-/- mutants show progressive GBM thickening in comparison with the larval state. Heterozygous pdx1 knockout also leads to glomerular hypertrophy as initial establishment of DKD similar to the pdx1-/- larvae. RNA sequencing of adult pdx1+/- kidneys uncovered regulations in multiple expected diabetic pathways related to podocyte disruption and hinting at early vascular dysregulation without obvious morphological alterations. Metabolome analysis and pharmacological intervention experiments revealed the contribution of phosphatidylethanolamine in the early establishment of kidney damage. In conclusion, this study identified the pdx1 mutant as a novel model for the study of DKD, showing signs of the early disease progression already in the larval stage and several selective features of later DKD in adult mutants.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Animais , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Feminino , Membrana Basal Glomerular , Humanos , Hipertrofia/metabolismo , Masculino , Fenótipo , Fosfatidiletanolaminas , Podócitos/metabolismo , Peixe-Zebra
5.
Pflugers Arch ; 474(2): 231-242, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797426

RESUMO

The distribution of atherosclerotic lesions in the aorta and its branches of ApoE knockout (ApoE-/-) mice is like that of patients with atherosclerosis. By using high-resolution MALDI mass spectrometry imaging (MSI), we aimed at characterizing universally applicable physiological biomarkers by comparing the murine lipid marker profile with that of human atherosclerotic arteries. Therefore, the aorta or carotid artery of male ApoE-/- mice at different ages, human arteries with documented atherosclerotic changes originated from amputated limbs, and corresponding controls were analysed. Obtained data were subjected to multivariate statistical analysis to identify potential biomarkers. Thirty-one m/z values corresponding to individual lipid species of cholesterol esters, lysophosphatidylcholines, lysophosphatidylethanolamines, and cholesterol derivatives were found to be specific in aortic atherosclerotic plaques of old ApoE-/- mice. The lipid composition at related vessel positions of young ApoE-/- mice was more comparable with wild-type mice. Twenty-six m/z values of the murine lipid markers were found in human atherosclerotic peripheral arteries but also control vessels and showed a more patient-dependent diverse distribution. Extensive data analysis without marker preselection based on mouse data revealed lysophosphatidylcholine and glucosylated cholesterol species, the latter not being detected in the murine atherosclerotic tissue, as specific potential novel human atherosclerotic vessel markers. Despite the heterogeneous lipid profile of atherosclerotic peripheral arteries derived from human patients, we identified lipids specifically colocalized to atherosclerotic human tissue and plaques in ApoE-/- mice. These data highlight species-dependent differences in lipid profiles between peripheral artery disease and aortic atherosclerosis.


Assuntos
Lipídeos/fisiologia , Placa Aterosclerótica/metabolismo , Animais , Aorta/metabolismo , Doenças da Aorta/metabolismo , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
Eur J Dermatol ; 31(5): 609-615, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34903507

RESUMO

The risk of UV radiation (UVR)-induced non-melanoma skin cancer (NMSC) is dramatically increased in immunosuppressed organ transplant recipients compared to immunocompetent patients. In the skin, p53 up-regulated modulator of apoptosis (PUMA) is a central regulator of apoptosis in response to UVR damage and immune response regulation. Data on the expression of PUMA in patients with NMSC relative to immune status is limited To study differences in the expression and distribution of PUMA in cutaneous SCC and BCC by immunohistochemistry between immunocompetent patients and organ transplant recipients, and the effect of CsA-containing immunosuppressive maintenance regimens on this expression. PUMA expression in SCC (n = 34) and BCC (n = 20) was analysed comparatively by immunohistochemical staining in matched cohorts of 27 immunocompetent patients and 27 organ transplant recipients SCC and BCC showed unequivocal positive PUMA expression, however, there was no significant difference in NMSC between organ transplant recipients and immunocompetent patients. A 17% reduction in staining score for PUMA in SCC, but not in BCC, of organ transplant recipients treated with a cyclosporin (CsA)-containing regimen was noted compared to organ transplant recipients without chronic CsA intake (p = 0.0381) PUMA expression in SCC, but not BCC, is significantly reduced by CsA-containing therapy, suggesting a disturbance of apoptosis by iatrogenic immunosuppression with a divergent impact on SCC and BCC.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Carcinoma Basocelular/genética , Carcinoma Basocelular/imunologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Hospedeiro Imunocomprometido , Proteínas Proto-Oncogênicas/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Idoso , Idoso de 80 Anos ou mais , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/patologia , Ciclosporina/efeitos adversos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunossupressores/efeitos adversos , Masculino , Pessoa de Meia-Idade , Transplante de Órgãos , Fatores de Risco , Neoplasias Cutâneas/patologia , Raios Ultravioleta/efeitos adversos , Regulação para Cima
7.
Adv Sci (Weinh) ; 8(18): e2101281, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278746

RESUMO

Increased acrolein (ACR), a toxic metabolite derived from energy consumption, is associated with diabetes and its complications. However, the molecular mechanisms are mostly unknown, and a suitable animal model with internal increased ACR does not exist for in vivo studying so far. Several enzyme systems are responsible for acrolein detoxification, such as Aldehyde Dehydrogenase (ALDH), Aldo-Keto Reductase (AKR), and Glutathione S-Transferase (GST). To evaluate the function of ACR in glucose homeostasis and diabetes, akr1a1a-/- zebrafish mutants are generated using CRISPR/Cas9 technology. Accumulated endogenous acrolein is confirmed in akr1a1a-/- larvae and livers of adults. Moreover, a series of experiments are performed regarding organic alterations, the glucose homeostasis, transcriptome, and metabolomics in Tg(fli1:EGFP) zebrafish. Akr1a1a-/- larvae display impaired glucose homeostasis and angiogenic retina hyaloid vasculature, which are caused by reduced acrolein detoxification ability and increased internal ACR concentration. The effects of acrolein on hyaloid vasculature can be reversed by acrolein-scavenger l-carnosine treatment. In adult akr1a1a-/- mutants, impaired glucose tolerance accompanied by angiogenic retina vessels and glomerular basement membrane thickening, consistent with an early pathological appearance in diabetic retinopathy and nephropathy, are observed. Thus, the data strongly suggest impaired ACR detoxification and elevated ACR concentration as biomarkers and inducers for diabetes and diabetic complications.


Assuntos
Acroleína/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Receptor de Insulina/metabolismo , Animais , Modelos Animais de Doenças , Homeostase , Larva/metabolismo , Metabolômica/métodos , Transdução de Sinais , Transcriptoma , Peixe-Zebra/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723077

RESUMO

Consumption of Eurasian bovine meat and milk has been associated with cancer development, in particular with colorectal cancer (CRC). In addition, zoonotic infectious agents from bovine products were proposed to cause colon cancer (zur Hausen et al., 2009). Bovine meat and milk factors (BMMF) are small episomal DNA molecules frequently isolated from bovine sera and milk products, and recently, also from colon cancer (de Villiers et al., 2019). BMMF are bioactive in human cells and were proposed to induce chronic inflammation in precancerous tissue leading to increased radical formation: for example, reactive oxygen and reactive nitrogen species and elevated levels of DNA mutations in replicating cells, such as cancer progenitor cells (zur Hausen et al., 2018). Mouse monoclonal antibodies against the replication (Rep) protein of H1MSB.1 (BMMF1) were used to analyze BMMF presence in different cohorts of CRC peritumor and tumor tissues and cancer-free individuals by immunohistochemistry and Western blot. BMMF DNA was isolated by laser microdissection from immunohistochemistry-positive tissue regions. We found BMMF Rep protein present specifically in close vicinity of CD68+ macrophages in the interstitial lamina propria adjacent to CRC tissues, suggesting the presence of local chronic inflammation. BMMF1 (modified H1MSB.1) DNA was isolated from the same tissue regions. Rep and CD68+ detection increased significantly in peritumor cancer tissues when compared to tissues of cancer-free individuals. This strengthens previous postulations that BMMF function as indirect carcinogens by inducing chronic inflammation and DNA damage in replicating cells, which represent progress to progenitor cells for adenoma (polyps) formation and cancer.


Assuntos
Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/imunologia , Colite/genética , Colite/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Macrófagos/metabolismo , Animais , Biomarcadores , Bovinos , Suscetibilidade a Doenças , Imunofluorescência , Expressão Gênica , Humanos , Imuno-Histoquímica , Macrófagos/imunologia
9.
iScience ; 23(12): 101763, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33251496

RESUMO

Regulation of glucose homeostasis is a fundamental process to maintain blood glucose at a physiological level, and its dysregulation is associated with the development of several metabolic diseases. Here, we report on a zebrafish mutant for Aldo-keto-reductase 1a1b (akr1a1b) as a regulator of gluconeogenesis. Adult akr1a1b -/- mutant zebrafish developed fasting hypoglycemia, which was caused by inhibiting phosphoenolpyruvate carboxykinase (PEPCK) expression as rate-limiting enzyme of gluconeogenesis. Subsequently, glucogenic amino acid glutamate as substrate for gluconeogenesis accumulated in the kidneys, but not in livers, and induced structural and functional pronephros alterations in 48-hpf akr1a1b -/- embryos. Akr1a1b -/- mutants displayed increased nitrosative stress as indicated by increased nitrotyrosine, and increased protein-S-nitrosylation. Inhibition of nitrosative stress using the NO synthase inhibitor L-NAME prevented kidney damage and normalized PEPCK expression in akr1a1b -/- mutants. Thus, the data have identified Akr1a1b as a regulator of gluconeogenesis in zebrafish and thereby controlling glucose homeostasis.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32923902

RESUMO

PURPOSE: Conversion of tumor subtype frequently occurs in the course of metastatic breast cancer but is a poorly understood phenomenon. This study aims to compare molecular subtypes with subsequent lung or pleural metastasis. PATIENTS AND METHODS: In a cohort of 57 patients with breast cancer and lung or pleural metastasis (BCLPM), we investigated paired primary and metastatic tissues for differential gene expression of 269 breast cancer genes. The PAM50 classifier was applied to identify intrinsic subtypes, and differential gene expression and cluster analysis were used to further characterize subtypes and tumors with subtype conversion. RESULTS: In primary breast cancer, the most frequent molecular subtype was luminal A (lumA; 49.1%); it was luminal B (lumB) in BCLPM (38.6%). Subtype conversion occurred predominantly in lumA breast cancers compared with other molecular subtypes (57.1% v 27.6%). In lumA cancers, 62 genes were identified with differential expression in metastatic versus primary disease, compared with only 10 differentially expressed genes in lumB, human epidermal growth factor receptor 2 (HER2)-enriched, and basal subtypes combined. Gene expression changes in lumA cancers affected not only the repression of the estrogen receptor pathway and cell cycle-related genes but also the WNT pathway, proteinases (MME, MMP11), and motility-associated cytoskeletal proteins (CK5, CK14, CK17). Subtype-switched lumA cancers were further characterized by cell proliferation and cell cycle checkpoint gene upregulation and dysregulation of the p53 pathway. This involved 83 notable gene expression changes. CONCLUSION: Our results indicate that gene expression changes and subsequent subtype conversion occur on a large scale in metastatic luminal A-type breast cancer compared with other molecular subtypes. This underlines the significance of molecular changes in metastatic disease, especially in tumors of initially low aggressive potential.

11.
Int J Mol Sci ; 21(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664451

RESUMO

Carnosinase 1 (CN1) is encoded by the Cndp1 gene and degrades carnosine and anserine, two natural histidine-containing dipeptides. In vitro and in vivo studies suggest carnosine- and anserine-mediated protection against long-term sequelae of reactive metabolites accumulating, e.g., in diabetes mellitus. We have characterized the metabolic impact of CN1 in 11- and 55-week-old Cndp1-knockout (Cndp1-KO) mice and litter-matched wildtypes (WT). In Cndp1-KO mice, renal carnosine and anserine concentrations were gender-specifically increased 2- to 9-fold, respectively in the kidney and both most abundant in the renal cortex, but remained unchanged in all other organs and in serum. Renal oxidized/reduced glutathione concentrations, renal morphology and function were unaltered. In Cndp1-KO mice at week 11, renal asparagine, serine and glutamine levels and at week 55, renal arginine concentration were reduced. Renal heat-shock-protein 70 (Hspa1a/b) mRNA declined with age in WT but not in Cndp1-KO mice, transcription factor heat-shock-factor 1 was higher in 55-week-old KO mice. Fasting blood glucose concentrations decreased with age in WT mice, but were unchanged in Cndp1-KO mice. Blood glucose response to intraperitoneal insulin was gender- but not genotype-dependent, the response to intraperitoneal glucose injection was similar in all groups. A global Cndp1-KO selectively, age- and gender-specifically, increases renal carnosine and anserine concentrations, alters renal amino acid- and HSP70 profile and modifies systemic glucose homeostasis. Increase of the natural occurring carnosine and anserine levels in the kidney by modulation of CN1 represents a promising therapeutic approach to mitigate or prevent chronic kidney diseases such as diabetic nephropathy.


Assuntos
Anserina/metabolismo , Carnosina/metabolismo , Dipeptidases/metabolismo , RNA Mensageiro/metabolismo , Aminoácidos/metabolismo , Animais , Glicemia/metabolismo , Nefropatias Diabéticas/metabolismo , Feminino , Glucose/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Insulina/metabolismo , Rim , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Circulation ; 140(7): 580-594, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31195810

RESUMO

BACKGROUND: Worldwide, diabetes mellitus and heart failure represent frequent comorbidities with high socioeconomic impact and steadily growing incidence, calling for a better understanding of how diabetic metabolism promotes cardiac dysfunction. Paradoxically, some glucose-lowering drugs have been shown to worsen heart failure, raising the question of how glucose mediates protective versus detrimental cardiac signaling. Here, we identified a histone deacetylase 4 (HDAC4) subdomain as a molecular checkpoint of adaptive and maladaptive signaling in the diabetic heart. METHODS: A conditional HDAC4 allele was used to delete HDAC4 specifically in cardiomyocytes (HDAC4-knockout). Mice were subjected to diabetes mellitus either by streptozotocin injections (type 1 diabetes mellitus model) or by crossing into mice carrying a leptin receptor mutation (db/db; type 2 diabetes mellitus model) and monitored for remodeling and cardiac function. Effects of glucose and the posttranslational modification by ß-linked N-acetylglucosamine (O-GlcNAc) on HDAC4 were investigated in vivo and in vitro by biochemical and cellular assays. RESULTS: We show that the cardio-protective N-terminal proteolytic fragment of HDAC4 is enhanced in vivo in patients with diabetes mellitus and mouse models, as well as in vitro under high-glucose and high-O-GlcNAc conditions. HDAC4-knockout mice develop heart failure in models of type 1 and type 2 diabetes mellitus, whereas wild-type mice do not develop clear signs of heart failure, indicating that HDAC4 protects the diabetic heart. Reexpression of the N-terminal fragment of HDAC4 prevents HDAC4-dependent diabetic cardiomyopathy. Mechanistically, the posttranslational modification of HDAC4 at serine (Ser)-642 by O-GlcNAcylation is an essential step for production of the N-terminal fragment of HDAC4, which was attenuated by Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632. Preventing O-GlcNAcylation at Ser-642 not only entirely precluded production of the N-terminal fragment of HDAC4 but also promoted Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632, pointing to a mutual posttranslational modification cross talk of (cardio-detrimental) phosphorylation at Ser-632 and (cardio-protective) O-GlcNAcylation at Ser-642. CONCLUSIONS: In this study, we found that O-GlcNAcylation of HDAC4 at Ser-642 is cardio-protective in diabetes mellitus and counteracts pathological Ca2+/calmodulin-dependent protein kinase II signaling. We introduce a molecular model explaining how diabetic metabolism possesses important cardio-protective features besides its known detrimental effects. A deeper understanding of the here-described posttranslational modification cross talk may lay the groundwork for the development of specific therapeutic concepts to treat heart failure in the context of diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/prevenção & controle , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Wistar , Serina/metabolismo
13.
Cell Mol Life Sci ; 76(22): 4551-4568, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31073745

RESUMO

The gene CNDP1 was associated with the development of diabetic nephropathy. Its enzyme carnosinase 1 (CN1) primarily hydrolyzes the histidine-containing dipeptide carnosine but other organ and metabolic functions are mainly unknown. In our study we generated CNDP1 knockout zebrafish, which showed strongly decreased CN1 activity and increased intracellular carnosine levels. Vasculature and kidneys of CNDP1-/- zebrafish were not affected, except for a transient glomerular alteration. Amino acid profiling showed a decrease of certain amino acids in CNDP1-/- zebrafish, suggesting a specific function for CN1 in the amino acid metabolisms. Indeed, we identified a CN1 activity for Ala-His and Ser-His. Under diabetic conditions increased carnosine levels in CNDP1-/- embryos could not protect from respective organ alterations. Although, weight gain through overfeeding was restrained by CNDP1 loss. Together, zebrafish exhibits CN1 functions, while CNDP1 knockout alters the amino acid metabolism, attenuates weight gain but cannot protect organs from diabetic complications.


Assuntos
Aminoácidos/metabolismo , Complicações do Diabetes/metabolismo , Dipeptidases/metabolismo , Aumento de Peso/fisiologia , Animais , Carnosina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Técnicas de Inativação de Genes/métodos , Rim/metabolismo , Peixe-Zebra
14.
Mol Metab ; 18: 143-152, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30287091

RESUMO

OBJECTIVES: The deficit of Glyoxalase I (Glo1) and the subsequent increase in methylglyoxal (MG) has been reported to be one the five mechanisms by which hyperglycemia causes diabetic late complications. Aldo-keto reductases (AKR) have been shown to metabolize MG; however, the relative contribution of this superfamily to the detoxification of MG in vivo, particularly within the diabetic state, remains unknown. METHODS: CRISPR/Cas9-mediated genome editing was used to generate a Glo1 knock-out (Glo1-/-) mouse line. Streptozotocin was then applied to investigate metabolic changes under hyperglycemic conditions. RESULTS: Glo1-/- mice were viable and showed no elevated MG or MG-H1 levels under hyperglycemic conditions. It was subsequently found that the enzymatic efficiency of various oxidoreductases in the liver and kidney towards MG were increased in the Glo1-/- mice. The functional relevance of this was supported by the altered distribution of alternative detoxification products. Furthermore, it was shown that MG-dependent AKR activity is a potentially clinical relevant pathway in human patients suffering from diabetes. CONCLUSIONS: These data suggest that in the absence of GLO1, AKR can effectively compensate to prevent the accumulation of MG. The combination of metabolic, enzymatic, and genetic factors, therefore, may provide a better means of identifying patients who are at risk for the development of late complications caused by elevated levels of MG.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Aldeído Pirúvico/metabolismo , Idoso , Aldo-Ceto Redutases/metabolismo , Animais , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Rim/metabolismo , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
15.
Int J Mol Sci ; 19(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30217069

RESUMO

BACKGROUND/AIMS: In rodents, carnosine treatment improves diabetic nephropathy, whereas little is known about the role and function of anserine, the methylated form of carnosine. METHODS: Antioxidant activity was measured by oxygen radical absorbance capacity and oxygen stress response in human renal tubular cells (HK-2) by RT-PCR and Western-Immunoblotting. In wildtype (WT) and diabetic mice (db/db), the effect of short-term anserine treatment on blood glucose, proteinuria and vascular permeability was measured. RESULTS: Anserine has a higher antioxidant capacity compared to carnosine (p < 0.001). In tubular cells (HK-2) stressed with 25 mM glucose or 20⁻100 µM hydrogen peroxide, anserine but not carnosine, increased intracellular heat shock protein (Hsp70) mRNA and protein levels. In HK-2 cells stressed with glucose, co-incubation with anserine also increased hemeoxygenase (HO-1) protein and reduced total protein carbonylation, but had no effect on cellular sirtuin-1 and thioredoxin protein concentrations. Three intravenous anserine injections every 48 h in 12-week-old db/db mice, improved blood glucose by one fifth, vascular permeability by one third, and halved proteinuria (all p < 0.05). CONCLUSION: Anserine is a potent antioxidant and activates the intracellular Hsp70/HO-1 defense system under oxidative and glycative stress. Short-term anserine treatment in diabetic mice improves glucose homeostasis and nephropathy.


Assuntos
Anserina/uso terapêutico , Antioxidantes/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Animais , Nefropatias Diabéticas/tratamento farmacológico , Peróxido de Hidrogênio/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteinúria
16.
Kidney Int ; 94(5): 937-950, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30190172

RESUMO

Diabetic nephropathy correlates more closely to defective mitochondria and increased oxidative stress in the kidney than to hyperglycemia. A key driving factor of diabetic nephropathy is angiotensin II acting via the G-protein-coupled cell membrane type 1 receptor. The present study aimed to investigate the role of the angiotensin II type 2 receptor (AT2R) at the early stages of diabetic nephropathy. Using receptor binding studies and immunohistochemistry we found that the mitochondria in renal tubules contain high-affinity AT2Rs. Increased renal mitochondrial AT2R density by transgenic overexpression was associated with reduced superoxide production of isolated mitochondria from non-diabetic rats. Streptozotocin-induced diabetes (28 days) caused a drop in the ATP/oxygen ratio and an increase in the superoxide production of isolated renal mitochondria from wild-type diabetic rats. This correlated with changes in the renal expression profile and increased tubular epithelial cell proliferation. AT2R overexpression in tubular epithelial cells inhibited all diabetes-induced renal changes including a drop in mitochondrial bioenergetics efficiency, a rise in mitochondrial superoxide production, metabolic reprogramming, and increased proliferation. Thus, AT2Rs translocate to mitochondria and can contribute to reno-protective effects at early stages of diabetes. Hence, targeted AT2R overexpression in renal cells may open new avenues to develop novel types of drugs preventing diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/prevenção & controle , Túbulos Renais/fisiologia , Mitocôndrias/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Trifosfato de Adenosina/biossíntese , Animais , Proliferação de Células , Perfilação da Expressão Gênica , Masculino , Mitocôndrias/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 2 de Angiotensina/análise , Estreptozocina
17.
Respiration ; 96(1): 29-40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29874679

RESUMO

BACKGROUND: Diabetes mellitus is a significant comorbidity of interstitial lung disease (ILD). OBJECTIVES: The aim of this study was to investigate the incidence of restrictive lung disease (RLD) and ILD in patients with prediabetes and type 2 diabetes (T2D). METHODS: Forty-eight nondiabetics, 68 patients with prediabetes, 29 newly diagnosed T2D, and 110 patients with long-term T2D were examined for metabolic control, diabetes-related complications, breathlessness, and lung function. Five participants with T2D, breathlessness, and RLD underwent multidetector computed tomography (MDCT) and a Six-Minute Walk Test (6MWT). Lung tissue from 4 patients without diabetes and from 3 patients with T2D was histologically examined for presence of pulmonary fibrosis. RESULTS: Breathlessness in combination with RLD was significantly increased in patients with prediabetes and T2D (p < 0.01). RLD was found in 9% of patients with prediabetes, in 20% of patients with newly diagnosed T2D, and in 27% of patients with long-term T2D. Thus, patients with long-term T2D had an increased risk of RLD (OR 5.82 [95% CI 1.71-20.5], p < 0.01). RLD was significantly associated with glucose metabolism and albuminuria (p < 0.01); furthermore, presence of nephropathy increased the risk of RLD (OR 8.57 [95% CI 3.4-21.9], p < 0.01) compared to nondiabetics. MDCT revealed ILD in 4 patients, the 6MWT correlated with the extent of ILD, and histological analysis showed fibrosing ILD in patients with T2D. CONCLUSIONS: This study demonstrates increased breathlessness and a high prevalence of RLD in patients with T2D, indicating an association between diabetes and fibrosing ILD.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Dispneia/etiologia , Doenças Pulmonares Intersticiais/etiologia , Adulto , Idoso , Complicações do Diabetes/epidemiologia , Dispneia/epidemiologia , Feminino , Humanos , Incidência , Doenças Pulmonares Intersticiais/diagnóstico , Masculino , Pessoa de Meia-Idade , Estado Pré-Diabético/complicações , Testes de Função Respiratória , Tomografia Computadorizada por Raios X , Teste de Caminhada
18.
Exp Clin Endocrinol Diabetes ; 125(9): 603-609, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28926867

RESUMO

The increasing prevalence of diabetes and its accompanying long-term complications, as well as the associated economic burden, calls for a rapid clinical translation of biomedical research to better valid the physiological relevance of the findings from basic research. To meet this condition, the Collaborative Research Center (CRC) 1118 has established the first nationwide diabetes-specific Biomaterialbank (BMB) that permanently preserves solid and liquid specimen retro- and prospectively at the Institute of Pathology and Department of Endocrinology of the University Hospital Heidelberg. The main purpose of this BMB is to collect, preserve, characterize and provide human diabetic specimen to researchers investigating the role of reactive metabolites (RM) as cause of diabetic late complications. In this review we discuss the urgent need to support translational and clinical research projects by making use of diabetic solid and liquid specimen and provide an insight into the organization and general conditions of biobanking procedures which are pivotal to guaranteeing high-quality human biomaterial. In light of diabetes-tailored biobanking, we describe our newly initiated activities and introduce the diverse technology platforms that can be used for the investigation of promising molecular targets pertinent for diabetes. With this article we demonstrate that the preservation of rare specimen is also particularly relevant in the non-neoplastic field and contributes to basic investigation, promotes comprehensive scientific data and fortifies the sustainability for diabetes research. In addition, the increased understanding of how metabolic imbalance triggers diabetes onset and progression and favors diabetic late symptoms might hold some promise for future innovative diagnostic and/ or therapeutic applications, eventually adding to the improvement of patient care.


Assuntos
Bancos de Espécimes Biológicos/provisão & distribuição , Pesquisa Biomédica , Diabetes Mellitus , Bancos de Espécimes Biológicos/organização & administração , Bancos de Espécimes Biológicos/tendências , Pesquisa Biomédica/métodos , Pesquisa Biomédica/organização & administração , Pesquisa Biomédica/tendências , Complicações do Diabetes/epidemiologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Prevalência , Manejo de Espécimes/métodos , Manejo de Espécimes/tendências
19.
Clin Ther ; 39(6): 1132-1144.e2, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28554530

RESUMO

PURPOSE: External electric muscle stimulation (EMS) of the thigh muscles was found to reduce pain resulting from diabetic neuropathy (DN), a vascular complication of diabetes. This study investigated circulating hematopoietic stem cells (HSCs) after EMS treatment. Impaired function of HSCs and the subpopulation endothelial progenitor cells (EPCs), important for neovascularization and endothelial repair, has been associated with DN. METHODS: Twenty-four patients with painful DN were treated 3 times with EMS over a period of 1 week. Blood samples were collected before and after the first EMS treatment. Before a fourth treatment, neuropathic pain was evaluated and a third blood sample was collected. Cells were used for flow cytometry. FINDINGS: Patients with painful DN reported that the pain decreased after 3 times of 1-hour treatments with EMS (Neuropathy Symptom Score: from 8 to 6, P = 0.001; Neuropathy Disability Score: from 5.5 to 5, P = 0.027, n = 24). At the end of the study, diastolic blood pressure had decreased from 80 to 70 mm Hg (P = 0.043), and plasma adrenaline and noradrenaline metabolites metanephrine and normetanephrine were reduced (both P ≤ 0.01; n = 21). A single EMS treatment caused an immediate and transient decrease in the frequency of CD34+ HSCs in circulation (-20%; P < 0.001; n = 27). In 9 of the patients with DN, the proportion of HSCs expressing vascular endothelial growth factor receptor 2 (VEGFR2; defining the HSCs as EPCs) increased by 36% (P = 0.011) after EMS treatment. Proteins required for binding to endothelium (junctional adhesion molecule A and CD31), homing toward hypoxic tissue (C-X-C chemokine receptor type 4), and endothelial differentiation (CD31) were increased on HSCs immediately after EMS treatment. An increased frequency of VEGFR2 expression was also observed on HSCs of 6 healthy control volunteers (34%; P = 0.046) after EMS treatment, but not after sham treatment. IMPLICATIONS: Three EMS treatments decreased symptoms of pain caused by DN and reduced diastolic blood pressure and biomarkers of stress. A single EMS treatment increased molecules mediating attachment and differentiation on the surface of HSCs in circulation. We hypothesize that the EMS-induced increase in surface attachment molecules on the HSCs caused the HSCs to leave circulation and that EMS treatment improves the function of HSCs and EPCs in vivo.


Assuntos
Diabetes Mellitus/terapia , Terapia por Estimulação Elétrica , Células-Tronco Hematopoéticas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Contagem de Células , Diabetes Mellitus/sangue , Diabetes Mellitus/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético , Adulto Jovem
20.
J Diabetes Complications ; 31(2): 304-310, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27776915

RESUMO

BACKGROUND: Glucose derived metabolism generates reactive metabolites affecting the neuronal system and lifespan in C. elegans. Here, the role of the insulin homologue ins-7 and its downstream effectors in the generation of high glucose induced neuronal damage and shortening of lifespan was studied. RESULTS: In C. elegans high glucose conditions induced the expression of the insulin homologue ins-7. Abrogating ins-7 under high glucose conditions in non-neuronal cells decreased reactive oxygen species (ROS)-formation and accumulation of methylglyoxal derived advanced glycation endproducts (AGEs), prevented structural neuronal damage and normalised head motility and lifespan. The restoration of lifespan by decreased ins-7 expression was dependent on the concerted action of sod-3 and glod-4 coding for the homologues of iron-manganese superoxide dismutase and glyoxalase 1, respectively. CONCLUSIONS: Under high glucose conditions mitochondria-mediated oxidative stress and glycation are downstream targets of ins-7. This impairs the neuronal system and longevity via a non-neuronal/neuronal crosstalk by affecting sod-3 and glod-4, thus giving further insight into the pathophysiology of diabetic complications.


Assuntos
Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glucose/intoxicação , Lactoilglutationa Liase/metabolismo , Estresse Oxidativo , Hormônios Peptídicos/antagonistas & inibidores , Superóxido Dismutase/metabolismo , Animais , Comportamento Animal , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/agonistas , Proteínas de Caenorhabditis elegans/genética , Retroalimentação Fisiológica , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Produtos Finais de Glicação Avançada/metabolismo , Lactoilglutationa Liase/antagonistas & inibidores , Lactoilglutationa Liase/genética , Longevidade , Mutação , Neuroproteção , Concentração Osmolar , Hormônios Peptídicos/agonistas , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/genética , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA