Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Virus Genes ; 55(4): 479-489, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30976951

RESUMO

Virulent Newcastle disease viruses (NDV) have been present in Mexico since 1946, and recently, multiple outbreaks have been reported in the country. Here, we characterized eleven NDV isolated from apparently healthy wild birds and backyard chickens in three different locations of Jalisco, Mexico in 2017. Total RNA from NDV was reverse-transcribed, and 1285 nucleotides, which includes 3/4 of the fusion gene, was amplified and sequenced using a long-read MinION sequencing method. The sequences were 99.99-100% identical to the corresponding region obtained using the Illumina MiSeq. Phylogenetic analysis using MinION sequences demonstrated that nine virulent NDV from wild birds belonged to sub-genotypes Vc and VIn, and two backyard chicken isolates were of sub-genotype Vc. The sub-genotype Vc viruses had nucleotide sequence identity that ranged from 97.7 to 98% to a virus of the same sub-genotype isolated from a chicken in Mexico in 2010. Three viruses from pigeons had 96.3-98.7% nucleotide identity to sub-genotype VIn pigeon viruses, commonly referred to as pigeon paramyxovirus, isolated in the USA during 2000-2016. This study demonstrates that viruses of sub-genotype Vc are still present in Mexico, and the detection of this sub-genotype in both chickens and wild birds suggests that transmission among these species may represent a biosecurity risk. This is the first detection and complete genome sequencing of genotype VI NDV from Mexico. In addition, the utilization of an optimized long-read sequencing method for rapid virulence and genotype identification using the Oxford nanopore MinION system is demonstrated.


Assuntos
Aves/virologia , Galinhas/virologia , Vírus da Doença de Newcastle/isolamento & purificação , Animais , Animais Selvagens/virologia , Columbidae/virologia , Genoma Viral , Genótipo , México , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/genética , Filogenia , Sequenciamento Completo do Genoma
2.
J Gen Virol ; 97(9): 2352-2362, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27283114

RESUMO

Infectious laryngotracheitis (ILT) is a highly contagious respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is controlled by the use of live-attenuated vaccines. Previously we reported the complete nucleotide sequence of the ILTV vaccine strain (TCO) and identified a nonsense mutation in the gene encoding the ORF C protein. This suggested that the ORF C protein might be associated with viral virulence. To investigate this, an ILTV recombinant with a deletion in the gene encoding ORF C was constructed using the genome of the virulent United States Department of Agriculture (USDA) challenge strain (USDAch). Compared to the parental virus, the ΔORF C recombinant replicated in chicken kidney (CK) cells with similar kinetics and generated similar titres. This demonstrated that the ORF C deletion had no deleterious effects on replication efficacy in vitro. In chickens, the recombinant induced only minor microscopic tracheal lesions when inoculated via the intra-tracheal/ocular route, while the parental strain induced moderate to severe microscopic tracheal lesions, even though virus load in the tracheas were comparable. Groups of chickens vaccinated via eye-drop with the ∆ORFC-ILTV were protected to levels comparable to those elicited by TCO vaccination. To our knowledge, this is the first report that demonstrates the suitability of ∆ORFC as a live-attenuated vaccine to prevent the losses caused by ILTV.


Assuntos
Deleção de Genes , Infecções por Herpesviridae/veterinária , Iltovirus/genética , Iltovirus/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/imunologia , Fatores de Virulência/genética , Animais , Linhagem Celular , Galinhas , Genes Virais , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Iltovirus/patogenicidade , Iltovirus/fisiologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia , Traqueia/patologia , Resultado do Tratamento , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Carga Viral , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Replicação Viral
3.
Virus Genes ; 44(2): 273-85, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22173980

RESUMO

Gallid herpesvirus-1 (GaHV-1), commonly named infectious laryngotracheitis (ILT) virus, causes the respiratory disease in chickens known as ILT. The molecular determinants associated with differences in pathogenicity of GaHV-1 strains are not completely understood, and a comparison of genomic sequences of isolates that belong to different genotypes could help identify genes involved in virulence. Dideoxy sequencing, 454 pyrosequencing and Illumina sequencing-by-synthesis were used to determine the nucleotide sequences of four genotypes of virulent strains from GaHV-1 groups I-VI. Three hundred and twenty-five open reading frames (ORFs) were compared with those of the recently sequenced genome of the Serva vaccine strain. Only four ORFs, ORF C, U(L)37, ICP4 and U(S)2 differed in amino acid (aa) lengths among the newly sequenced genomes. Genome sequence alignments were used to identify two regions (5' terminus and the unique short/repeat short junction) that contained deletions. Seventy-eight synonymous and 118 non-synonymous amino acid substitutions were identified with the examined ORFs. Exclusive to the genome of the Serva vaccine strain, seven non-synonymous mutations were identified in the predicted translation products of the genes encoding glycoproteins gB, gE, gL and gM and three non-structural proteins U(L)28 (DNA packaging protein), U(L)5 (helicase-primase) and the immediate early protein ICP4. Furthermore, our comparative sequence analysis of published and newly sequenced GaHV-1 isolates has provided evidence placing the cleavage/packaging site (a-like sequence) within the inverted repeats instead of its placement at the 3' end of the U(L) region as annotated in the GenBank's entries NC006623 and HQ630064.


Assuntos
Variação Genética , Genoma Viral , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/genética , Herpesvirus Galináceo 1/isolamento & purificação , Doenças das Aves Domésticas/virologia , Animais , Galinhas , DNA Viral/química , DNA Viral/genética , Infecções por Herpesviridae/virologia , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fases de Leitura Aberta , Mutação Puntual , Análise de Sequência de DNA , Estados Unidos , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA