Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(21): 9216-9223, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38747059

RESUMO

Potassium manganese fluoride phosphate, KMnPO4F, has been obtained through mild hydrothermal synthesis and characterized by scanning electron microscopy, microprobe analysis and X-ray diffraction. The compound possesses an orthorhombic symmetry and chiral space group P212121 with a = 4.7884(2), b = 9.0172(4), c = 9.5801(4) Å, and Z = 4. Its crystal structure is composed of Mn3+O4F square pyramids sharing vertices with PO4 tetrahedra. This anionic framework is neutralized by K+ cations. As the temperature decreases, a short-range correlation state (Tmax ∼ 35 K) of KMnPO4F is formed, followed by the establishment of antiferromagnetic (AFM) long-range order at TN = 25 K. The latter is marked by sharp λ-type anomalies in both Fisher's specific heat d(χ‖T)/dT and heat capacity Cp. Pulsed magnetic field measurements on the single crystals identify the a axis as the easy magnetic axis and reveal a spin-flop transition at µ0Hspin-flop = 19 T. Density functional theory indicates that in variance with the three-dimensional network of KMnPO4F, it is a two-dimensional Ising magnetic system represented by buckled layers of integer spins S = 2 of Mn3+ ions. The strongest AFM exchange interaction, J1 ∼ -13 K, couples Mn3+ ions into linear chains running along the a axis. The chains themselves are ferromagnetically connected (J3 ∼ -4 K) within the ab plane. The interplane AFM exchange interaction (J2 ∼ -1 K) is weak and frustrated.

2.
Acta Crystallogr A Found Adv ; 79(Pt 3): 229-245, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36999622

RESUMO

The previously described approach for determination of the relativistic atomic X-ray scattering factors (XRSFs) at the Dirac-Hartree-Fock level [Olukayode et al. (2023). Acta Cryst. A79, 59-79] has been used to evaluate the XRSFs for a total of 318 species including all chemically relevant cations [Greenwood & Earnshaw (1997). Chemistry of the Elements], six monovalent anions (O-, F-, Cl-, Br-, I-, At-), the ns1np3 excited (valence) states of carbon and silicon, and several exotic cations (Db5+, Sg6+, Bh7+, Hs8+ and Cn2+) for which the chemical compounds have been recently identified, thus significantly extending the coverage relative to all the earlier studies. Unlike the data currently recommended by the International Union of Crystallography (IUCr) [Maslen et al. (2006). International Tables for Crystallography, Vol. C, Section 6.1.1, pp. 554-589], which originate from different levels of theory including the non-relativistic Hartree-Fock and correlated methods, as well as the relativistic Dirac-Slater calculations, the re-determined XRSFs come from a uniform treatment of all species within the same relativistic B-spline Dirac-Hartree-Fock approach [Zatsarinny & Froese Fischer (2016). Comput. Phys. Comm. 202, 287-303] that includes the Breit interaction correction and the Fermi nuclear charge density model. While it was not possible to compare the quality of the generated wavefunctions with that from the previous studies due to a lack (to the best of our knowledge) of such data in the literature, a careful comparison of the total electronic energies and the estimated atomic ionization energies with experimental and theoretical values from other studies instils confidence in the quality of the calculations. A combination of the B-spline approach and a fine radial grid allowed for a precise determination of the XRSFs for each species in the entire 0 ≤ sin θ/λ ≤ 6 Å-1 range, thus avoiding the necessity for extrapolation in the 2 ≤ sin θ/λ ≤ 6 Å-1 interval which, as was shown in the first study, may lead to inconsistencies. In contrast to the Rez et al. work [Acta Cryst. (1994), A50, 481-497], no additional approximations were introduced when calculating wavefunctions for the anions. The conventional and extended expansions were employed to produce interpolating functions for each species in both the 0 ≤ sin θ/λ ≤ 2 Å-1 and 2 ≤ sin θ/λ ≤ 6 Å-1 intervals, with the extended expansions offering a significantly better accuracy at a minimal computational overhead. The combined results of this and the previous study may be used to update the XRSFs for neutral atoms and ions listed in Vol. C of the 2006 edition of International Tables for Crystallography.

3.
Acta Crystallogr A Found Adv ; 79(Pt 1): 59-79, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601764

RESUMO

In this first of a series of publications, the X-ray scattering factors for neutral atoms are revisited. Using the recently developed DBSR_HF program [Zatsarinny & Froese Fischer (2016). Comput. Phys. Comm. 202, 287-303] the fully relativistic Dirac-Hartree-Fock ground-state wavefunctions for all atoms with Z = 2-118 (He-Og) have been calculated using the extended average level scheme and including both the Breit interaction correction to the electronic motion due to magnetic and retardation effects, and the Fermi distribution function for the description of the nuclear charge density. The comparison of our wavefunctions with those obtained in several previous studies in terms of the total and orbital (spinor) electronic energies, and a number of local and integrated total and orbital properties, confirmed the quality of the generated wavefunctions. The employed dense radial grid combined with the DBSR_HF's B-spline representation of the relativistic one-electron orbitals allowed for a precise integration of the X-ray scattering factors using a newly developed Fortran program SF. Following the established procedure [Maslen et al. (2006). International Tables for Crystallography, Vol. C, Section 6.1.1, pp. 554-589], the resulting X-ray scattering factors have been interpolated in the 0 ≤ sin θ/λ ≤ 2 Å-1 and 2 ≤ sin θ/λ ≤ 6 Å-1 ranges using the recommended analytical functions with both the four- (which is a current convention) and five-term expansions. An exhaustive comparison of the newly generated X-ray scattering factors with the International Union of Crystallography recommended values and those from a number of previous studies showed an overall good agreement and allowed identification of a number of typos and inconsistencies in the recommended quantities. A detailed analysis of the results suggests that the newly derived values may represent an excellent compromise among all the previous studies. The determined conventional interpolating functions for the two sin θ/λ intervals show, on average, the same accuracy as the recommended parametrizations. However, an extension of each expansion by only a single term provides a significant improvement in the accuracy of the interpolated values for an overwhelming majority of the atoms. As such, an updated set of the fully relativistic X-ray scattering factors and the interpolating functions for neutral atoms with Z = 2-118 can be easily incorporated into the existing X-ray diffraction software with only minor modifications. The outcomes of the undertaken research should be of interest to members of the crystallographic community who push the boundaries of the accuracy and precision of X-ray diffraction studies.

4.
Acta Crystallogr A Found Adv ; 77(Pt 5): 399-419, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473095

RESUMO

The previously reported exact potential and multipole moment (EP/MM) method for fast and precise evaluation of the intermolecular electrostatic interaction energies in molecular crystals using the pseudoatom representation of the electron density [Nguyen, Macchi & Volkov (2020), Acta Cryst. A76, 630-651] has been extended to the calculation of the electrostatic potential (ESP), electric field (EF) and electric field gradient (EFG) in an infinite crystal. The presented approach combines an efficient Ewald-type summation (ES) of atomic multipoles up to the hexadecapolar level in direct and reciprocal spaces with corrections for (i) the net polarization of the sample (the `surface term') due to a net dipole moment of the crystallographic unit cell (if present) and (ii) the short-range electron-density penetration effects. The rederived and reported closed-form expressions for all terms in the ES algorithm have been augmented by the expressions for the surface term available in the literature [Stenhammar, Trulsson & Linse (2011), J. Chem. Phys. 134, 224104] and the exact potential expressions reported in a previous study [Volkov, King, Coppens & Farrugia (2006), Acta Cryst. A62, 400-408]. The resulting algorithm, coded using Fortran in the XDPROP module of the software package XD, was tested on several small molecular crystal systems (formamide, benzene, L-dopa, paracetamol, amino acids etc.) and compared with a series of EP/MM-based direct-space summations (DS) performed within a certain number of unit cells generated along both the positive and negative crystallographic directions. The EP/MM-based ES technique allows for a noticeably more precise determination of the EF and EFG and significantly better precision of the evaluated ESP when compared with the DS calculations, even when the latter include contributions from an array of symmetry-equivalent atoms generated within four additional unit cells along each crystallographic direction. In terms of computational performance, the ES/EP/MM method is significantly faster than the DS calculations performed within the extended unit-cell limits but trails the DS calculations within the reduced summation ranges. Nonetheless, the described EP/MM-based ES algorithm is superior to the direct-space summations as it does not require the user to monitor continuously the convergence of the evaluated properties as a function of the summation limits and offers a better precision-performance balance.

5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 77(Pt 2): 232-240, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843731

RESUMO

The synthesis and characterization of a new aluminophosphate, Na6[Al3P5O20], obtained as single crystals in the same experiment together with Cl-sodalite, Na8[Al6Si6O24]Cl2, is reported. Na6[Al3P5O20], with a strongly pseudo-orthorhombic lattice, is described by the monoclinic crystal structure established in the study of a pseudomerohedric microtwin. The design of Na6[Al3P5O20] can be interpreted as an alternative to sodalite, with a monoclinic (pseudo-orthorhombic) 2×4×1 super-structure and unit-cell parameters multiples of those of sodalite: a ≃ 2as, b ≃ 4bs and c ≃ cs. The triperiodic framework is built by AlO6, AlO4 and PO4 polyhedra having vertex-bridging contacts. While all the oxygen vertices of the Al-centred octahedra and tetrahedra are shared with phosphate groups, some of the PO4 tetrahedra remain `pendant', e.g. containing vertices not shared with other polyhedra of the aluminophosphate construction. Na atoms occupy framework channels and cavities surrounded by eight-, six- and four-membered windows with maximal effective pore widths of 4.86 × 3.24 and 4.31 × 3.18 Å. The generalized framework density is equal to 19.8, which means that the compound may be classified as a microporous zeolite. The Na6[Al3P5O20] crystal structure is discussed as being formed from octahedral rods arranged in two perpendicular directions, similar to the rods elongated in one direction in the NASICON-type compounds, which have been intensively investigated as promising materials for batteries. Analogous properties can be expected for phases with a modified composition of the Na6Al3P5O20 topology, where the Al atoms at the centres of octahedra are replaced by Fe, V or Cr.

6.
Acta Crystallogr A Found Adv ; 76(Pt 6): 630-651, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125348

RESUMO

The previously reported exact potential and multipole moment (EP/MM) method for fast and accurate evaluation of the intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density [Volkov, Koritsanszky & Coppens (2004). Chem. Phys. Lett. 391, 170-175; Nguyen, Kisiel & Volkov (2018). Acta Cryst. A74, 524-536; Nguyen & Volkov (2019). Acta Cryst. A75, 448-464] is extended to the calculation of electrostatic interaction energies in molecular crystals using two newly developed implementations: (i) the Ewald summation (ES), which includes interactions up to the hexadecapolar level and the EP correction to account for short-range electron-density penetration effects, and (ii) the enhanced EP/MM-based direct summation (DS), which at sufficiently large intermolecular separations replaces the atomic multipole moment approximation to the electrostatic energy with that based on the molecular multipole moments. As in the previous study [Nguyen, Kisiel & Volkov (2018). Acta Cryst. A74, 524-536], the EP electron repulsion integral is evaluated analytically using the Löwdin α-function approach. The resulting techniques, incorporated in the XDPROP module of the software package XD2016, have been tested on several small-molecule crystal systems (benzene, L-dopa, paracetamol, amino acids etc.) and the crystal structure of a 181-atom decapeptide molecule (Z = 4) using electron densities constructed via the University at Buffalo Aspherical Pseudoatom Databank [Volkov, Li, Koritsanszky & Coppens (2004). J. Phys. Chem. A, 108, 4283-4300]. Using a 2015 2.8 GHz Intel Xeon E3-1505M v5 computer processor, a 64-bit implementation of the Löwdin α-function and one of the higher optimization levels in the GNU Fortran compiler, the ES method evaluates the electrostatic interaction energy with a numerical precision of at least 10-5 kJ mol-1 in under 6 s for any of the tested small-molecule crystal structures, and in 48.5 s for the decapeptide structure. The DS approach is competitive in terms of precision and speed with the ES technique only for crystal structures of small molecules that do not carry a large molecular dipole moment. The electron-density penetration effects, correctly accounted for by the two described methods, contribute 28-64% to the total electrostatic interaction energy in the examined systems, and thus cannot be neglected.

7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 3): 483-491, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831265

RESUMO

Two novel phases, potassium copper aluminium bis(phosphate), KCuAl[PO4]2 (I), and potassium zinc aluminium bis(phosphate-silicate), K(Al,Zn)2[(P,Si)O4]2 (II), were obtained in one hydrothermal synthesis experiment at 553 K. Their crystal structures have been studied using single-crystal X-ray diffraction. (I) is a new member of the A+M2+M3+[PO4]2 family. Its open 3D framework built by AlO5 and PO4 polyhedra includes small channels populated by columns of CuO6 octahedra sharing edges, and large channels where K+ ions are deposited. It is assumed that the stability of this structure type is due to the pair substitution of Cu/Al with Ni/Fe, Co/Fe or Mg/Fe in different representatives of the series. From the KCuAl[PO4]2 structural features, one may suppose it is a potentially electrochemically active material and/or possible low-temperature antiferromagnet. In accordance with results obtained from X-ray diffraction data, using scanning electron microscopy, microprobe analysis and detailed crystal chemical observation, (II) is considered as a product of epitaxial intergrowth of phosphate KAlZn[PO4]2 and silicate KAlSi[SiO4]2 components having closely similar crystal structures. The assembly of `coherent intergrowth' is described in the framework of a single diffraction pattern.

8.
Acta Crystallogr C Struct Chem ; 76(Pt 3): 302-310, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32132289

RESUMO

Two novel K/Mn phosphate hydrates, namely, dipotassium trimanganese dipyrophosphate dihydrate, K2Mn3(H2O)2[P2O7]2, (I), and potassium manganese dialuminium triphosphate dihydrate, KMn(H2O)2[Al2(PO4)3], (II), were obtained in the form of single crystals during a single hydrothermal synthesis experiment. Their crystal structures were studied by X-ray diffraction. Both new compounds are members of the morphotropic series of phosphates with the following formulae: A2M3(H2O)2[P2O7]2, where A = K, NH4, Rb or Na and M = Mn, Fe, Co or Ni, and AM2+(H2O)2[M3+2(PO4)3], where A = Cs, Rb, K, NH4 or (H3O); M2+ = Mn, Fe, Co or Ni; and M3+ = Al, Ga or Fe. A detailed crystal chemical analysis revealed correlations between the unit-cell parameters of the members of the series, their structural features and the sizes of the cations. It has been shown that a mixed type anionic framework is formed in (II) by aluminophosphate [(AlO2)2(PO4)2]∞ layers, with a cationic topology similar to the Si/Al-topology of the crystal structures of feldspars. A study of the magnetic susceptibility of (II) demonstrates a paramagnetic behaviour of the compound.

9.
Acta Crystallogr C Struct Chem ; 75(Pt 5): 514-522, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31062707

RESUMO

A novel phosphate, sodium zinc aluminium bis(phosphate), NaZnAl(PO4)2, was obtained under mild-temperature hydrothermal conditions at 553 K. The crystal structure has been studied using single-crystal X-ray experimental data. The pseudo-hexagonal phase NaZnAl(PO4)2 crystallizes in the monoclinic space group P21/c. Its unique crystal structure is based on a three-dimensional (3D) framework built by Zn-, Al- and P-centred tetrahedra sharing vertices. Channels parallel to the [101] and [-101] directions are limited by six- and eight-membered windows, and incorporate Na atoms. The new compound is discussed as a member of the morphotropic series AMM'PO4, where A = Na, K, Rb or NH4, M = Cu, Ni, Co, Fe, Zn or Mg and M' = Fe, Al or Ga. The title compound is the first Na representative within the series and is characterized by a 3D architecture of tetrahedra populated in an ordered manner by Zn2+, Al3+ and P5+ ions.

10.
Acta Crystallogr A Found Adv ; 75(Pt 3): 448-464, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31041901

RESUMO

The Fourier transform method for analytical determination of the two-center Coulomb integrals needed for evaluation of the electrostatic interaction energies between pseudoatom-based charge distributions is presented, and its Fortran-based implementation using the 128-bit floating-point arithmetic in the XDPROP module of the XD software is described. In combination with mathematical libraries included in the Lahey/Fujitsu LF64 Linux compiler, the new implementation outperforms the previously reported Löwdin α-function technique [Nguyen et al. (2018). Acta Cryst. A74, 524-536] in terms of precision of the determined individual Coulomb integrals regardless of whether the latter uses the 64-, 80- or 128-bit precision floating-point format, all the while being only marginally slower. When the Löwdin α-function or Fourier transform method is combined with a multipole moment approximation for large interatomic separations (such a hybrid scheme is called the analytical exact potential and multipole moment method, aEP/MM) the resulting electrostatic interaction energies are evaluated with a precision of ≤5 × 10-5 kJ mol-1 for the current set of benchmark systems composed of H, C, N and O atoms and ranging in size from water-water to dodecapeptide-dodecapeptide dimers. Using a 2012 4.0 GHz AMD FX-8350 computer processor, the two recommended aEP/MM implementations, the 80-bit precision Löwdin α-function and 128-bit precision Fourier transform methods, evaluate the total electrostatic interaction energy between two 225-atom monomers of the benchmark dodecapeptide molecule in 6.0 and 7.9 s, respectively, versus 3.1 s for the previously reported 64-bit Löwdin α-function approach.

11.
Acta Crystallogr A Found Adv ; 74(Pt 5): 524-536, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30182939

RESUMO

The previously reported [Volkov et al. (2004). Chem. Phys. Lett. 391, 170-175] exact potential and multipole moment (EP/MM) method for evaluation of intermolecular electrostatic interaction energies using the nuclei-centered pseudoatom representation of electron densities is significantly improved in terms of both speed and accuracy by replacing the numerical quadrature integration of the exact potential with a fully analytical technique. The resulting approach, incorporated in the XDPROP module of the software package XD, has been tested on several molecular systems ranging in size from water-water to dodecapeptide-dodecapeptide dimers using electron densities constructed via the University at Buffalo Aspherical Atom Databank. The improved hybrid method provides electrostatic interaction energies within the uncertainty of ≤0.2 kJ mol-1 for all benchmark systems. The running time for a dimer of a sizable, 225-atom dodecapeptide is under 4 s on a 2012 central processing unit (2.8 GHz AMD Opteron 6348) and under 3 s on a relatively modern processor (2.8 GHz Intel Xeon E3-1505M v5).


Assuntos
Elétrons/classificação , Algoritmos , Modelos Moleculares , Estrutura Molecular , Fenômenos Físicos , Eletricidade Estática , Termodinâmica , Água/química
12.
Acta Crystallogr C Struct Chem ; 74(Pt 8): 936-943, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30080169

RESUMO

Caesium manganese hexahydrate phosphate, CsMn(H2O)6(PO4), was synthesized under hydrothermal conditions. Its crystal structure was determined from single-crystal X-ray diffraction data. The novel phase crystallizes in the hexagonal space group P63mc and represents the first manganese member in the struvite morphotropic series, AM(H2O)6(TO4). Its crystal structure is built from Mn(H2O)6 octahedra and PO4 tetrahedra linked into a framework via hydrogen bonding. The large Cs atoms are encapsulated in the framework cuboctahedral cavities. It is shown that the size of the A+ ionic radius within the morphotropic series AM(H2O)6(XO4) results is certain types of crystal structures and affects the values of the unit-cell parameters. Structural relationships with Na(H2O)Mg(H2O)6(PO4) and the mineral hazenite, KNa(H2O)2Mg2(H2O)12(PO4)2, are discussed.

13.
Acta Crystallogr C Struct Chem ; 74(Pt 5): 641-649, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726476

RESUMO

Rubidium tetramanganese tris(phosphate), RbMn4(PO4)3, has been synthesized as single crystals under hydrothermal conditions. The crystal structure was refined in the space group Pnnm (D2h12). It is argued that the size factor RM/RA, i.e. the ratio of the A+ ionic radius to the M2+ ionic radius, within the morphotropic series AM4(TO4)3 corresponds to a specific type of crystal structure. At low temperatures, the antiferromagnet superimposed on a buckled kagomé network in RbMn4(PO4)3 experiences a transition into a long-range ordered state with finite spontaneous magnetization. First principles calculations provide the dominant magnetic exchange interactions both within and between the kagomé layers. The analysis of these interactions allows us to suggest a model of alternating ferromagnetic and antiferromagnetic arrangements within chains of Mn3 atoms.

14.
J Mol Graph Model ; 70: 1-6, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27639086

RESUMO

We present a unique platform for molecular visualization and design that uses novel subatomic feature detection software in tandem with 3D hyperwall visualization technology. We demonstrate the fleshing-out of pharmacophores in drug molecules, as well as reactive sites in catalysts, focusing on subatomic features. Topological analysis with picometer resolution, in conjunction with interactive volume-rendering of the Laplacian of the electronic charge density, leads to new insight into docking and catalysis. Visual data-mining is done efficiently and in parallel using a 4×4 3D hyperwall (a tiled array of 3D monitors driven independently by slave GPUs but displaying high-resolution, synchronized and functionally-related images). The visual texture of images for a wide variety of molecular systems are intuitive to experienced chemists but also appealing to neophytes, making the platform simultaneously useful as a tool for advanced research as well as for pedagogical and STEM education outreach purposes.


Assuntos
Educação , Imageamento Tridimensional/métodos , Modelos Moleculares , Pesquisa , Desenho de Fármacos , Eletricidade Estática
15.
Acta Crystallogr A Found Adv ; 71(Pt 2): 245-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25727874

RESUMO

The widely used pseudoatom formalism [Stewart (1976). Acta Cryst. A32, 565-574; Hansen & Coppens (1978). Acta Cryst. A34, 909-921] in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the density-normalized Cartesian spherical harmonic functions for up to l ≤ 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens [Acta Cryst. (1988), A44, 6-7]. It was shown that the analytical form for normalization coefficients is available primarily for l ≤ 4 [Hansen & Coppens, 1978; Paturle & Coppens, 1988; Coppens (1992). International Tables for Crystallography, Vol. B, Reciprocal space, 1st ed., edited by U. Shmueli, ch. 1.2. Dordrecht: Kluwer Academic Publishers; Coppens (1997). X-ray Charge Densities and Chemical Bonding. New York: Oxford University Press]. Only in very special cases it is possible to derive an analytical representation of the normalization coefficients for 4 < l ≤ 7 (Paturle & Coppens, 1988). In most cases for l > 4 the density normalization coefficients were calculated numerically to within seven significant figures. In this study we review the literature on the density-normalized spherical harmonics, clarify the existing notations, use the Paturle-Coppens (Paturle & Coppens, 1988) method in the Wolfram Mathematica software to derive the Cartesian spherical harmonics for l ≤ 20 and determine the density normalization coefficients to 35 significant figures, and computer-generate a Fortran90 code. The article primarily targets researchers who work in the field of experimental X-ray electron density, but may be of some use to all who are interested in Cartesian spherical harmonics.

16.
J Colloid Interface Sci ; 371(1): 144-9, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22284448

RESUMO

Using antioxidants is an important means of treating lead poisoning. Prior in vivo studies showed marked differences between various chelator antioxidants in their ability to decrease both blood Pb(II) levels and oxidative stress resulting from lead poisoning. The comparative abilities of NAC and NACA to Pb(II) were studied in vitro, for the first time, to examine the role of the -OH/-NH(2) functional group in antioxidant binding behavior. To assay the antioxidant-divalent metal interaction, the antioxidants were probed as solid surfaces, adsorbing Pb(II) onto them. Surface characterization was carried out using X-ray photoelectron spectroscopy (XPS) analysis to quantify Pb(II) in the resulting adducts. XPS of the Pb 4f orbitals showed that more Pb(II) was chemically bound to NACA than NAC. In addition, the antioxidant surfaces probed via point-of-zero charge (PZC) measurements of NAC and NACA were obtained to gain further insight into the Pb-NAC and Pb-NACA binding, showing that Coulombic interactions played a partial role in facilitating complex formation. The data correlated well with solution analysis of metal-ligand complexation. UV-vis spectroscopy was used to probe complexation behavior. NACA was found to have the higher binding affinity as shown by free Pb(II) available in the solution after complexation from HPLC data. Electrospray ionization mass spectrometry (ESI-MS) was applied to delineate the structures of Pb-antioxidant complexes. Experimental results were further supported by density functional theory (DFT) calculations of supermolecular interaction energies (E(inter)) showing a greater interaction of Pb(II) with NACA than NAC.


Assuntos
Acetilcisteína/análogos & derivados , Acetilcisteína/metabolismo , Sequestradores de Radicais Livres/farmacologia , Intoxicação por Chumbo/tratamento farmacológico , Chumbo/metabolismo , Acetilcisteína/química , Acetilcisteína/farmacologia , Cromatografia Líquida de Alta Pressão , Sequestradores de Radicais Livres/química , Chumbo/química , Espectroscopia Fotoeletrônica , Espectrometria de Massas por Ionização por Electrospray
17.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 5): 485-99, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19390154

RESUMO

Although electrostatic interactions contribute only a part of the interaction energies between macromolecules, unlike dispersion forces they are highly directional and therefore dominate the nature of molecular packing in crystals and in biological complexes and contribute significantly to differences in inhibition strength among related enzyme inhibitors. In the reported study, a wide range of complexes of influenza neuraminidases with inhibitor molecules (sialic acid derivatives and others) have been analyzed using charge densities from a transferable aspherical-atom data bank. The strongest interactions of the residues are with the acidic group at the C2 position of the inhibitor ( approximately -300 kJ mol(-1) for -COO(-) in non-aromatic inhibitors, approximately -120-210 kJ mol(-1) for -COO(-) in aromatic inhibitors and approximately -450 kJ mol(-1) for -PO(3)(2-)) and with the amino and guanidine groups at C4 ( approximately -250 kJ mol(-1)). Other groups contribute less than approximately 100 kJ mol(-1). Residues Glu119, Asp151, Glu227, Glu276 and Arg371 show the largest variation in electrostatic energies of interaction with different groups of inhibitors, which points to their important role in the inhibitor recognition. The Arg292-->Lys mutation reduces the electrostatic interactions of the enzyme with the acidic group at C2 for all inhibitors that have been studied (SIA, DAN, 4AM, ZMR, G20, G28, G39 and BCZ), but enhances the interactions with the glycerol group at C6 for inhibitors that contain it. This is in agreement with the lower level of resistance of the mutated virus to glycerol-containing inhibitors compared with the more hydrophobic derivatives.


Assuntos
Cristalografia por Raios X , Bases de Dados de Proteínas , Vírus da Influenza A/enzimologia , Vírus da Influenza B/enzimologia , Neuraminidase/química , Proteínas Virais/química , Substituição de Aminoácidos , Aminoácidos/química , Cálcio/química , Domínio Catalítico/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/classificação , Inibidores Enzimáticos/farmacologia , Glicerol/química , Glicerol/farmacologia , Hidrocarbonetos Aromáticos/química , Hidrocarbonetos Aromáticos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Íons/química , Modelos Moleculares , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/farmacologia , Neuraminidase/antagonistas & inibidores , Neuraminidase/genética , Eletricidade Estática , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética
18.
J Am Chem Soc ; 131(17): 6154-60, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19366267

RESUMO

The experimental electron density study of Ti(C(5)H(4)Me)(2)[(CH(2))(2)CMe(2)] provides direct evidence for the presence of (C-C)-->Ti agostic interactions. In accord with the model of Scherer and McGrady, the C(alpha)-C(beta) bond densities no longer show cylindrical symmetry in the vicinity of the Ti atom and differ markedly from those of the other C-C bonds. At the points along the C(alpha)-C(beta) bond where the deviation is maximal the electron density is elongated toward the metal center. The distortion is supported by parallel theoretical calculations. A calculation on an Mo complex in which the agostic interaction is absent supports the Scherer and McGrady criterion for agostic interactions. Despite the formal d(0) electron configuration for this Ti(IV) species, a significant nonzero population is observed for the d orbitals, the d orbital population is largest for the d(xy) orbital, the lobes of which point toward the two C(alpha) atoms. Of the three different basis sets for the Ti atom used in theoretical calculations with the B3LYP functional, only the 6-311++G** set for Ti agrees well with the experimental charge density distribution in the Ti-(C(alpha)-C(beta))(2) plane.

19.
J Comput Chem ; 30(9): 1379-91, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19031414

RESUMO

A new computer program for post-processing analysis of quantum-chemical electron densities is described. The code can work with Slater- and Gaussian-type basis functions of arbitrary angular momentum. It has been applied to explore the basis-set dependence of the electron density and its Laplacian in terms of local and integrated topological properties. Our analysis, including Gaussian/Slater basis sets up to sextuple/quadruple-zeta order, shows that these properties considerably depend on the choice of type and number of primitives utilized in the wavefunction expansion. Basis sets with high angular momentum (l = 5 or l = 6) are necessary to achieve convergence for local properties of the density and the Laplacian. In agreement with previous studies, atomic charges defined within Bader's Quantum Theory of Atoms in Molecules appear to be much more basis-set dependent than the Hirshfeld's stockholder charges. The former ones converge only at the quadruple-zeta/higher level with Gaussian/Slater functions.


Assuntos
Simulação por Computador , Teoria Quântica , Software , Elétrons , Modelos Químicos
20.
Chemistry ; 14(2): 706-13, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17955556

RESUMO

[Zn(TA)2(H2O)2] (H-TA=tiglic acid) has been embedded in a framework composed of CECR (CECR=C-ethylcalix[4]resorcinarene) molecules to examine its E-->Z photoisomerization in a periodic framework. The photoisomerization of tiglic acid in CECR-[Zn(TA)2(H2O)2]4 H2O proceeds without the [2+2]-dimerization reaction that often occurs in crystals of uncomplexed analogues, and without breakdown of the crystal lattice that frequently occurs in neat crystals. The two Zn-coordinated TA molecules are located in different size cavities. The rate constants of the isomerization reaction are strongly affected by the size of the reaction cavity. Analysis of the temperature dependence of the reaction rates and the occupancies in the final photostationary state shows that the activation energies and the standard enthalpies of activation are dependent on the difference between the reaction cavities. This is the first quantitative diffraction study of solid-state E/Z isomerization of a metal-coordinated ligand in a periodic host environment.


Assuntos
Crotonatos/química , Substâncias Macromoleculares/química , Compostos Organometálicos/química , Zinco/química , Cristalização , Cristalografia por Raios X , Hemiterpenos , Cinética , Substâncias Macromoleculares/síntese química , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Fotoquímica , Estereoisomerismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA