Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37242117

RESUMO

Germanium-tin nanoparticles are promising materials for near- and mid-infrared photonics thanks to their tunable optical properties and compatibility with silicon technology. This work proposes modifying the spark discharge method to produce Ge/Sn aerosol nanoparticles during the simultaneous erosion of germanium and tin electrodes. Since tin and germanium have a significant difference in the potential for electrical erosion, an electrical circuit damped for one period was developed to ensure the synthesis of Ge/Sn nanoparticles consisting of independent germanium and tin crystals of different sizes, with the ratio of the atomic fraction of tin to germanium varying from 0.08 ± 0.03 to 0.24 ± 0.07. We investigated the elemental and phase composition, size, morphology, and Raman and absorbance spectra of the nanoparticles synthesized under different inter-electrode gap voltages and the presence of additional thermal treatment directly in a gas flow at 750 °C. The research shows that the in-flow thermal treatment of aerosol-agglomerated nanoparticles produced special individual bicrystalline Janus Ge/Sn nanoparticles with an average size of 27 nm and a decreasing absorption function with a changing slope at 700 nm.

2.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985485

RESUMO

The hydrothermal synthesis of nickel oxide in the presence of triethanolamine was studied. Furthermore, the relationship between the synthesis conditions, thermal behavior, crystal structure features, phase composition and microstructure of semi-products, and the target oxide nanopowders was established. The thermal behavior of the semi-products was studied using a simultaneous thermal analysis (in particular, using one that involved thermogravimetric analysis and differential scanning calorimetry, TGA/DSC). An X-ray diffraction (XRD) analysis revealed that varying the triethanolamine and nickel chloride concentration in the reaction system can govern the formation of α- and ß-Ni(OH)2-based semi-products that contain Ni(HCO3)2 or Ni2(CO3)(OH)2 as additional components. The set of functional groups in the powders was determined using a Fourier-transform infrared (FTIR) spectroscopy analysis. Using microextrusion printing, a composite NiO-(CeO2)0.80(Sm2O3)0.20 anode film was fabricated. Using XRD, scanning electron microscopy (SEM), and atomic force microscopy (AFM) analyses, it was demonstrated that the crystal structure, dispersity, and microstructure character of the obtained material correspond to the initial nanopowders. Using Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM), the local electrophysical properties of the printed composite film were examined. The value of its conductivity was evaluated using the four-probe method on a direct current in the temperature range of 300-650 °C. The activation energy for the 500-650 °C region, which is of most interest in the context of intermediate-temperature SOFCs working temperatures, has been estimated.

3.
Sensors (Basel) ; 22(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560169

RESUMO

The atmospheric pressure solvothermal (APS) synthesis of nanocrystalline SnO2 (average size of coherent scattering regions (CSR)-7.5 ± 0.6 nm) using tin acetylacetonate as a precursor was studied. The resulting nanopowder was used as a functional ink component in microextrusion printing of a tin dioxide thick film on the surface of a Pt/Al2O3/Pt chip. Synchronous thermal analysis shows that the resulting semiproduct is transformed completely into tin dioxide nanopowder at 400 °C within 1 h. The SnO2 powder and the resulting film were shown to have a cassiterite-type structure according to X-ray diffraction analysis, and IR spectroscopy was used to establish the set of functional groups in the material composition. The microstructural features of the tin dioxide powder were analyzed using scanning (SEM) and transmission (TEM) electron microscopy: the average size of the oxide powder particles was 8.2 ± 0.7 nm. Various atomic force microscopy (AFM) techniques were employed to investigate the topography of the oxide film and to build maps of surface capacitance and potential distribution. The temperature dependence of the electrical conductivity of the printed SnO2 film was studied using impedance spectroscopy. The chemosensory properties of the formed material when detecting H2, CO, NH3, C6H6, C3H6O and C2H5OH, including at varying humidity, were also examined. It was demonstrated that the obtained SnO2 film has an increased sensitivity (the sensory response value was 1.4-63.5) and selectivity for detection of 4-100 ppm C2H5OH at an operating temperature of 200 °C.

4.
Eur J Med Chem ; 215: 113212, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582576

RESUMO

The emergence of drug-resistant strains of pathogenic microorganisms necessitates the creation of new drugs. In order to find new compounds that effectively inhibit the growth of pathogenic bacteria and fungi, we synthesized a set of N4-derivatives of cytidine, 2'-deoxycytidine and 5-metyl-2'-deoxycytidine bearing extended N4-alkyl and N4-phenylalkyl groups. The derivatives demonstrate activity against a number of Gram-positive bacteria, including Mycobacterium smegmatis (MIC = 24-200 µM) and Staphylococcus aureus (MIC = 50-200 µM), comparable with the activities of some antibiotics in medical use. The most promising compound appeared to be N4-dodecyl-5-metyl-2'-deoxycytidine 4h with activities of 24 and 48 µM against M. smegmatis and S. aureus, respectively, and high inhibitory activity of 0.5 mM against filamentous fungi that can, among other things, damage works of art, such as tempera painting. Noteworthy, some of other synthesized compounds are active against fungal growth with the inhibitory concentration in the range of 0.5-3 mM.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Citidina/análogos & derivados , Citidina/farmacologia , Células A549 , Animais , Antibacterianos/síntese química , Antibacterianos/toxicidade , Antifúngicos/síntese química , Antifúngicos/toxicidade , Bactérias/efeitos dos fármacos , Citidina/toxicidade , Descoberta de Drogas , Fungos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana
5.
J Colloid Interface Sci ; 588: 209-220, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33388583

RESUMO

The formation process for planar solid electrolytes in the CeO2-Y2O3 system has been studied using efficient, high-performance, high-resolution microplotter printing technology, using functional ink based on nanopowders (the average size of crystallites was 12-15 nm) of a similar composition obtained by programmed coprecipitation of metal hydroxides. The dependence of the microstructure of the oxide nanoparticles obtained and their crystal structure on yttrium concentration has been studied using a wide range of methods. According to X-ray diffraction (XRD), the nanopowders and coatings produced are single-phase, with a cubic crystal structure of the fluorite type, and the electronic state and content of cerium and yttrium in the printed coatings have been determined using X-ray photoelectron spectroscopy (XPS). The results of scanning electron (SEM) and atomic force microscopy (AFM) have shown that the coatings produced are homogeneous, they do not contain defects in the form of fractures and the height difference over an area of 1 µm2 is 30-45 nm. The local electrophysical characteristics of the oxide coatings produced (the work function of the coating surface, capacitance values, maps of the surface potential and capacitive contrast distribution over the surface) have been studied using Kelvin-probe force microscopy (KPFM) and scanning capacitive microscopy (SCM). Using impedance spectroscopy, the dependence of the electrophysical characteristics of printed planar solid electrolytes in the CeO2-Y2O3 system on yttrium content has been determined and the prospects of the technology developed for the manufacture of modern, intermediate-temperature, solid oxide fuel cells have been demonstrated.

6.
Nanomaterials (Basel) ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35010086

RESUMO

In this article, a facile, one-step method for the formation of silver thin-film nanostructures on the surface of Al2O3 substrates using the hydrothermal method is proposed. The dependence of the SERS effect intensity of the formed films during the detection of methylene blue (MB) low concentrations on the synthesis conditions, additional temperature treatment, and laser radiation wavelength (532 and 780 nm) in comparison with similar dye films on commercial SERS substrates is shown. The detection limit of the analyte used for the indicated lasers is estimated. The effect of the synthesis temperature on the particle size, crystal structure, and microstructure features of the obtained thin films based on silver nanoparticles is demonstrated. Using spreading resistance microscopy, the interface between the substrate and Ag particles is studied, and the dependence of the size of the corresponding gap between them and the nature of microstructural defects on the parameters of hydrothermal treatment of reaction systems in the presence of Al2O3 substrates is shown. As a result of the study, the factors associated with the properties of the obtained SERS substrates and the parameters of recording the spectra, which affect the amplification factor of the spectral lines intensity of the analyte, are revealed.

7.
ACS Appl Mater Interfaces ; 12(50): 56135-56150, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270411

RESUMO

Information about the surrounding atmosphere at a real timescale significantly relies on available gas sensors to be efficiently combined into multisensor arrays as electronic olfaction units. However, the array's performance is challenged by the ability to provide orthogonal responses from the employed sensors at a reasonable cost. This issue becomes more demanded when the arrays are designed under an on-chip paradigm to meet a number of emerging calls either in the internet-of-things industry or in situ noninvasive diagnostics of human breath, to name a few, for small-sized low-powered detectors. The recent advances in additive manufacturing provide a solid top-down background to develop such chip-based gas-analytical systems under low-cost technology protocols. Here, we employ hydrolytically active heteroligand complexes of metals as ink components for microplotter patterning a multioxide combinatorial library of chemiresistive type at a single chip equipped with multiple electrodes. To primarily test the performance of such a multisensor array, various semiconducting oxides of the p- and n-conductance origins based on pristine and mixed nanocrystalline MnOx, TiO2, ZrO2, CeO2, ZnO, Cr2O3, Co3O4, and SnO2 thin films, of up to 70 nm thick, have been printed over hundred µm areas and their micronanostructure and fabrication conditions are thoroughly assessed. The developed multioxide library is shown to deliver at a range of operating temperatures, up to 400 °C, highly sensitive and highly selective vector signals to different, but chemically akin, alcohol vapors (methanol, ethanol, isopropanol, and n-butanol) as examples at low ppm concentrations when mixed with air. The suggested approach provides us a promising way to achieve cost-effective and well-performed electronic olfaction devices matured from the diverse chemiresistive responses of the printed nanocrystalline oxides.

8.
Sensors (Basel) ; 18(8)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096818

RESUMO

The application of gas sensors in breath analysis is an important trend in the early diagnostics of different diseases including lung cancer, ulcers, and enteric infection. However, traditional methods of synthesis of metal oxide gas-sensing materials for semiconductor sensors based on wet sol-gel processes give relatively high sensitivity of the gas sensor to changing humidity. The sol-gel process leading to the formation of superficial hydroxyl groups on oxide particles is responsible for the strong response of the sensing material to this factor. In our work, we investigated the possibility to synthesize metal oxide materials with reduced sensitivity to water vapors. Dry synthesis of SnO2 nanoparticles was implemented in gas phase by spark discharge, enabling the reduction of the hydroxyl concentration on the surface and allowing the production of tin dioxide powder with specific surface area of about 40 m²/g after annealing at 610 °C. The drop in sensor resistance does not exceed 20% when air humidity increases from 40 to 100%, whereas the response to 100 ppm of hydrogen is a factor of 8 with very short response time of about 1 s. The sensor response was tested in mixtures of air with hydrogen, which is the marker of enteric infections and the marker of early stage fire, and in a mixture of air with lactate (marker of stomach cancer) and ammonia gas (marker of Helicobacter pylori, responsible for stomach ulcers).


Assuntos
Testes Respiratórios/instrumentação , Testes Respiratórios/métodos , Gases/análise , Gases/química , Umidade , Nanopartículas Metálicas/química , Nanomedicina/métodos , Óxidos/química , Ar/análise , Amônia/análise , Incêndios , Humanos , Hidrogênio/análise , Ácido Láctico/análise , Neoplasias Gástricas/diagnóstico , Úlcera Gástrica/diagnóstico
9.
MethodsX ; 4: 305-309, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29159136

RESUMO

A method for determining the critical values of the flow speed and the flow constriction degree characteristic of the alignment of cylindrical nano-objects in a flowing suspension is proposed. Previously, the alignment process of cylindrical nano-objects in suspensions was investigated by using birefringence of the polarized light and the small-angle X-ray scattering. While both methods are suitable for measuring the alignment degree of cylindrical nano-objects in suspensions diluted down to low concentrations, they are restricted for the application to undiluted concentrated suspensions because of non-transparency and multiple scattering of X-rays. In addition, the use of the second method requires an expensive synchrotron equipment. We present a simple and faster method based on the direct ultrasound attenuation measurements of longitudinal viscosity of a suspension containing cylindrical nano-objects, which decreases monotonically, approaching its asymptotic value with increase in the flow speed and the flow constriction degree. The principle and advantages of the proposed method are as follows: •The cylindrical nano-objects align along an accelerated flow at overcritical values of the flow speed and the constriction degree.•The critical values correspond to the state of a suspension possessing viscosity close to the asymptotic value.•The method is applicable to undiluted concentrated suspensions, including opaque ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA