Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 30(2): 283-293, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37773633

RESUMO

PURPOSE: Pharmacologic ascorbate (P-AscH-) is hypothesized to be an iron (Fe)-dependent tumor-specific adjuvant to chemoradiation in treating glioblastoma (GBM). This study determined the efficacy of combining P-AscH- with radiation and temozolomide in a phase II clinical trial while simultaneously investigating a mechanism-based, noninvasive biomarker in T2* mapping to predict GBM response to P-AscH- in humans. PATIENTS AND METHODS: The single-arm phase II clinical trial (NCT02344355) enrolled 55 subjects, with analysis performed 12 months following the completion of treatment. Overall survival (OS) and progression-free survival (PFS) were estimated with the Kaplan-Meier method and compared across patient subgroups with log-rank tests. Forty-nine of 55 subjects were evaluated using T2*-based MRI to assess its utility as an Fe-dependent biomarker. RESULTS: Median OS was estimated to be 19.6 months [90% confidence interval (CI), 15.7-26.5 months], a statistically significant increase compared with historic control patients (14.6 months). Subjects with initial T2* relaxation < 50 ms were associated with a significant increase in PFS compared with T2*-high subjects (11.2 months vs. 5.7 months, P < 0.05) and a trend toward increased OS (26.5 months vs. 17.5 months). These results were validated in preclinical in vitro and in vivo model systems. CONCLUSIONS: P-AscH- combined with temozolomide and radiotherapy has the potential to significantly enhance GBM survival. T2*-based MRI assessment of tumor iron content is a prognostic biomarker for GBM clinical outcomes. See related commentary by Nabavizadeh and Bagley, p. 255.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico , Biomarcadores , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Imageamento por Ressonância Magnética , Temozolomida/uso terapêutico
2.
Redox Biol ; 38: 101804, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33260088

RESUMO

Pharmacological ascorbate (P-AscH-) combined with standard of care (SOC) radiation and temozolomide is being evaluated in a phase 2 clinical trial (NCT02344355) in the treatment of glioblastoma (GBM). Previously published data demonstrated that paramagnetic iron (Fe3+) catalyzes ascorbate's oxidation to form diamagnetic iron (Fe2+). Because paramagnetic Fe3+ may influence relaxation times observed in MR imaging, quantitative MR imaging of P-AscH--induced changes in redox-active Fe was assessed as a biomarker for therapy response. Gel phantoms containing either Fe3+ or Fe2+ were imaged with T2* and quantitative susceptibility mapping (QSM). Fifteen subjects receiving P-AscH- plus SOC underwent T2* and QSM imaging four weeks into treatment. Subjects were scanned: pre-P-AscH- infusion, post-P-AscH- infusion, and post-radiation (3-4 h between scans). Changes in T2* and QSM relaxation times in tumor and normal tissue were calculated and compared to changes in Fe3+ and Fe2+ gel phantoms. A GBM mouse model was used to study the relationship between the imaging findings and the labile iron pool. Phantoms containing Fe3+ demonstrated detectable changes in T2* and QSM relaxation times relative to Fe2+ phantoms. Compared to pre-P-AscH-, GBM T2* and QSM imaging were significantly changed post-P-AscH- infusion consistent with conversion of Fe3+ to Fe2+. No significant changes in T2* or QSM were observed in normal brain tissue. There was moderate concordance between T2* and QSM changes in both progression free survival and overall survival. The GBM mouse model showed similar results with P-AscH- inducing greater changes in tumor labile iron pools compared to the normal tissue. CONCLUSIONS: T2* and QSM MR-imaging responses are consistent with P-AscH- reducing Fe3+ to Fe2+, selectively in GBM tumor volumes and represent a potential biomarker of response. This study is the first application using MR imaging in humans to measure P-AscH--induced changes in redox-active iron.


Assuntos
Ferro , Imageamento por Ressonância Magnética , Biomarcadores , Encéfalo , Oxirredução
3.
Clin Cancer Res ; 25(22): 6590-6597, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31427282

RESUMO

PURPOSE: Standard treatment for glioblastoma (GBM) includes surgery, radiation therapy (RT), and temozolomide (TMZ), yielding a median overall survival (OS) of approximately 14 months. Preclinical models suggest that pharmacologic ascorbate (P-AscH-) enhances RT/TMZ antitumor effect in GBM. We evaluated the safety of adding P-AscH- to standard RT/TMZ therapy. PATIENTS AND METHODS: This first-in-human trial was divided into an RT phase (concurrent RT/TMZ/P-AscH-) and an adjuvant (ADJ) phase (post RT/TMZ/P-AscH- phase). Eight P-AscH- dose cohorts were evaluated in the RT phase until targeted plasma ascorbate levels were achieved (≥20 mmol/L). In the ADJ phase, P-AscH- doses were escalated in each subject at each cycle until plasma concentrations were ≥20 mmol/L. P-AscH- was infused 3 times weekly during the RT phase and 2 times weekly during the ADJ phase continuing for six cycles or until disease progression. Adverse events were quantified by CTCAE (v4.03). RESULTS: Eleven subjects were evaluable. No dose-limiting toxicities occurred. Observed toxicities were consistent with historical controls. Adverse events related to study drug were dry mouth and chills. Targeted ascorbate plasma levels of 20 mmol/L were achieved in the 87.5 g cohort; diminishing returns were realized in higher dose cohorts. Median progression-free survival (PFS) was 9.4 months and median OS was 18 months. In subjects with undetectable MGMT promoter methylation (n = 8), median PFS was 10 months and median OS was 23 months. CONCLUSIONS: P-AscH-/RT/TMZ is safe with promising clinical outcomes warranting further investigation.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Glioblastoma/terapia , Radioterapia , Temozolomida/uso terapêutico , Adulto , Idoso , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/efeitos adversos , Quimiorradioterapia , Terapia Combinada , Feminino , Glioblastoma/diagnóstico , Glioblastoma/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Radioterapia/efeitos adversos , Radioterapia/métodos , Temozolomida/administração & dosagem , Temozolomida/efeitos adversos , Resultado do Tratamento
4.
Cancer Res ; 78(24): 6838-6851, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30254147

RESUMO

: Chemoradiation therapy is the mainstay for treatment of locally advanced, borderline resectable pancreatic cancer. Pharmacologic ascorbate (P-AscH-, i.e., intravenous infusions of ascorbic acid, vitamin C), but not oral ascorbate, produces high plasma concentrations capable of selective cytotoxicity to tumor cells. In doses achievable in humans, P-AscH- decreases the viability and proliferative capacity of pancreatic cancer via a hydrogen peroxide (H2O2)-mediated mechanism. In this study, we demonstrate that P-AscH- radiosensitizes pancreatic cancer cells but inhibits radiation-induced damage to normal cells. Specifically, radiation-induced decreases in clonogenic survival and double-stranded DNA breaks in tumor cells, but not in normal cells, were enhanced by P-AscH-, while radiation-induced intestinal damage, collagen deposition, and oxidative stress were also reduced with P-AscH- in normal tissue. We also report on our first-in-human phase I trial that infused P-AscH- during the radiotherapy "beam on." Specifically, treatment with P-AscH- increased median overall survival compared with our institutional average (21.7 vs. 12.7 months, P = 0.08) and the E4201 trial (21.7 vs. 11.1 months). Progression-free survival in P-AscH--treated subjects was also greater than our institutional average (13.7 vs. 4.6 months, P < 0.05) and the E4201 trial (6.0 months). Results indicated that P-AscH- in combination with gemcitabine and radiotherapy for locally advanced pancreatic adenocarcinoma is safe and well tolerated with suggestions of efficacy. Because of the potential effect size and minimal toxicity, our findings suggest that investigation of P-AscH- efficacy is warranted in a phase II clinical trial. SIGNIFICANCE: These findings demonstrate that pharmacologic ascorbate enhances pancreatic tumor cell radiation cytotoxicity in addition to offering potential protection from radiation damage in normal surrounding tissue, making it an optimal agent for improving treatment of locally advanced pancreatic adenocarcinoma.


Assuntos
Ácido Ascórbico/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Colágeno/metabolismo , Dano ao DNA , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Intervalo Livre de Doença , Feminino , Glutationa/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Estresse Oxidativo , Tolerância a Radiação , Radioterapia , Proteínas Recombinantes/metabolismo , Resultado do Tratamento , Gencitabina
6.
Radiat Res ; 187(6): 743-754, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28437190

RESUMO

Ketogenic diets are low in carbohydrates and high in fat, which forces cells to rely more heavily upon mitochondrial oxidation of fatty acids for energy. Relative to normal cells, cancer cells are believed to exist under a condition of chronic mitochondrial oxidative stress that is compensated for by increases in glucose metabolism to generate reducing equivalents. In this study we tested the hypothesis that a ketogenic diet concurrent with radiation and chemotherapy would be clinically tolerable in locally advanced non-small cell lung cancer (NSCLC) and pancreatic cancer and could potentially exploit cancer cell oxidative metabolism to improve therapeutic outcomes. Mice bearing MIA PaCa-2 pancreatic cancer xenografts were fed either a ketogenic diet or standard rodent chow, treated with conventionally fractionated radiation (2 Gy/fraction), and tumor growth rates were assessed daily. Tumors were assessed for immunoreactive 4-hydroxy-2-nonenal-(4HNE)-modfied proteins as a marker of oxidative stress. Based on this and another previously published preclinical study, phase 1 clinical trials in locally advanced NSCLC and pancreatic cancer were initiated, combining standard radiation and chemotherapy with a ketogenic diet for six weeks (NSCLC) or five weeks (pancreatic cancer). The xenograft experiments demonstrated prolonged survival and increased 4HNE-modfied proteins in animals consuming a ketogenic diet combined with radiation compared to radiation alone. In the phase 1 clinical trial, over a period of three years, seven NSCLC patients enrolled in the study. Of these, four were unable to comply with the diet and withdrew, two completed the study and one was withdrawn due to a dose-limiting toxicity. Over the same time period, two pancreatic cancer patients enrolled in the trial. Of these, one completed the study and the other was withdrawn due to a dose-limiting toxicity. The preclinical experiments demonstrate that a ketogenic diet increases radiation sensitivity in a pancreatic cancer xenograft model. However, patients with locally advanced NSCLC and pancreatic cancer receiving concurrent radiotherapy and chemotherapy had suboptimal compliance to the oral ketogenic diet and thus, poor tolerance.


Assuntos
Quimiorradioterapia/métodos , Dietoterapia/métodos , Dieta Cetogênica/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Neoplasias Pancreáticas/terapia , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Iowa , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Pancreáticas/diagnóstico , Resultado do Tratamento
7.
Cancer Cell ; 31(4): 487-500.e8, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28366679

RESUMO

Pharmacological ascorbate has been proposed as a potential anti-cancer agent when combined with radiation and chemotherapy. The anti-cancer effects of ascorbate are hypothesized to involve the autoxidation of ascorbate leading to increased steady-state levels of H2O2; however, the mechanism(s) for cancer cell-selective toxicity remain unknown. The current study shows that alterations in cancer cell mitochondrial oxidative metabolism resulting in increased levels of O2⋅- and H2O2 are capable of disrupting intracellular iron metabolism, thereby selectively sensitizing non-small-cell lung cancer (NSCLC) and glioblastoma (GBM) cells to ascorbate through pro-oxidant chemistry involving redox-active labile iron and H2O2. In addition, preclinical studies and clinical trials demonstrate the feasibility, selective toxicity, tolerability, and potential efficacy of pharmacological ascorbate in GBM and NSCLC therapy.


Assuntos
Ácido Ascórbico/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Ferro/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Linhagem Celular Tumoral , Quimiorradioterapia/métodos , Feminino , Glioblastoma/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/radioterapia , Masculino , Camundongos Nus , Oxigênio/metabolismo , Radiossensibilizantes/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA