Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Signal Behav ; 18(1): 2239420, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37503632

RESUMO

The FLOWERING LOCUS T (FT) gene is the essential integrator of flowering regulatory pathways in angiosperms. The paralogs of the FT gene may perform antagonistic functions, as exemplified by BvFT1, that suppresses flowering in Beta vulgaris, unlike the paralogous activator BvFT2. The roles of FT genes in other amaranths were less investigated. Here, we transformed Arabidopsis thaliana with the FLOWERING LOCUS T like (FTL) genes of Chenopodium ficifolium and found that both CfFTL1 and CfFTL2-1 accelerated flowering, despite having been the homologs of the Beta vulgaris floral promoter and suppressor, respectively. The floral promotive effect of CfFTL2-1 was so strong that it caused lethality when overexpressed under the 35S promoter. CfFTL2-1 placed in an inducible cassette accelerated flowering after induction with methoxyphenozide. The spontaneous induction of CfFTL2-1 led to precocious flowering in some primary transformants even without chemical induction. The CqFT2-1 homolog from Chenopodium quinoa had the same impact on viability and flowering as CfFTL2-1 when transferred to A. thaliana. After the FTL gene duplication in Amaranthaceae, the FTL1 copy maintained the role of floral activator. The second copy FTL2 underwent subsequent duplication and functional diversification, which enabled it to control the onset of flowering in amaranths to adapt to variable environments.


The FLOWERINGLOCUS T like 2­1 gene of Chenopodium ficifolium andChenopodium quinoa acts as a strong activator of flowering in Arabidopsis, triggering flowering at cotyledon stage and causing lethality when overexpressed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Chenopodium , Arabidopsis/genética , Arabidopsis/metabolismo , Chenopodium/genética , Chenopodium/metabolismo , Plântula/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética
2.
Front Plant Sci ; 13: 968982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968100

RESUMO

In Norway spruce, as in many other conifers, the germination capacity of somatic embryos is strongly influenced by the desiccation phase inserted after maturation. The intensity of drying during desiccation eminently affected the formation of emblings (i.e., seedlings developed from somatic embryos). Compared to non-desiccated embryos, the germination capacity of embryos desiccated at 100% relative humidity was about three times higher, but the reduction of relative humidity to 95 and 90% had a negative effect on the subsequent embryo development. The water loss observed in these embryos did not lead to an increase in lipid peroxidation, as shown by malondialdehyde levels. Another metabolic pathway in plants that mediates a response to abiotic stresses is directed toward the biosynthesis of polyamines (PAs). The activities of PA biosynthetic enzymes increased steadily in embryos during desiccation at 100% relative humidity, whereas they decreased at lower humidity. The total content of free PAs in the embryos gradually decreased throughout desiccation. The increase in free putrescine (Put) and perchloric acid-insoluble Put conjugates was observed in embryos desiccated at lower humidity. These changes were accompanied to some extent by the transcription of the genes for the PA biosynthesis enzymes. Desiccation at 100% relative humidity increased the activity of the cell wall-modifying enzymes ß-1,3-glucanases and chitinases; the activities of these enzymes were also significantly suppressed at reduced humidity. The same pattern was observed in the transcription of some ß-1,3-glucanase and chitinase genes. Desiccation treatments triggered metabolic processes that responded to water availability, suggesting an active response of the embryo to the reduction in humidity. A positive effect was demonstrated only for desiccation at high relative humidity. Some of the physiological characteristics described can be used as markers of inappropriate relative humidity during somatic embryo desiccation.

3.
Plant Sci ; 320: 111279, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643618

RESUMO

The survival and adaptation of angiosperms depends on the proper timing of flowering. The weedy species Chenopodium ficifolium serves as a useful diploid model for comparing the transition to flowering with the important tetraploid crop Chenopodium quinoa due to the close phylogenetic relationship. The detailed transcriptomic and hormonomic study of the floral induction was performed in the short-day accession C. ficifolium 459. The plants grew more rapidly under long days but flowered later than under short days. The high levels of abscisic, jasmonic, and salicylic acids at long days were accompanied by the elevated expression of the genes responding to oxidative stress. The increased concentrations of stress-related phytohormones neither inhibited the plant growth nor accelerated flowering in C. ficifolium 459 at long photoperiods. Enhanced content of cytokinins and the stimulation of cytokinin and gibberellic acid signaling pathways under short days may indicate the possible participation of these phytohormones in floral initiation. The accumulation of auxin metabolites suggests the presence of a dynamic regulatory network in C. ficifolium 459.


Assuntos
Chenopodium , Chenopodium/genética , Chenopodium/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Salicilatos
4.
Data Brief ; 43: 108333, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35677628

RESUMO

The transition from vegetative growth to reproduction is the essential commitment in plant life. It is triggered by environmental cues (day length, temperature, nutrients) and regulated by the very complex signaling gene network and by phytohormones. The control of flowering is well understood in Arabidopsis thaliana and in some crops, much less is known about the other angiosperms. We performed the detailed transcriptomic survey of the course of floral induction in seedlings of Chenopodium ficifolium accession 459, a close relative of the important crop Chenopodium quinoa. It flowers earlier under short days (6 hours light) than under long days (18 hours light). Plants were sampled at the age 14, 18, 21 and 24 days in the morning and afternoon, both at long and short day, for RNA-Sequencing, and also for phytohormone analyses. We employed Illumina NovaSeq6000 platform to generate raw reads, which were cleaned and mapped against the de novo constructed transcriptome of C. ficifolium. The global gene expression levels between long and short days were pairwise compared at each time points. We identified differentially expressed genes associated with floral induction in C. ficifolium 459. Particular attention was paid to the genes responsible for phytohormone metabolism and signaling. The datasets produced by this project contributed to better understanding of the regulation of growth and development in the genus Chenopodium.

5.
Front Plant Sci ; 13: 823617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237290

RESUMO

Exposure of Norway spruce (Picea abies) somatic embryos and those of many other conifers to post-maturation desiccation treatment significantly improves their germination. An integration analysis was conducted to understand the underlying processes induced during the desiccation phase at the molecular level. Carbohydrate, protein and phytohormone assays associated with histological and proteomic studies were performed for the evaluation of markers and actors in this phase. Multivariate comparison of mature somatic embryos with mature desiccated somatic embryos and/or zygotic embryos provided new insights into the processes involved during the desiccation step of somatic embryogenesis. Desiccated embryos were characterized by reduced levels of starch and soluble carbohydrates but elevated levels of raffinose family oligosaccharides. Desiccation treatment decreased the content of abscisic acid and its derivatives but increased total auxins and cytokinins. The content of phytohormones in dry zygotic embryos was lower than in somatic embryos, but their profile was mostly analogous, apart from differences in cytokinin profiles. The biological processes "Acquisition of desiccation tolerance", "Response to stimulus", "Response to stress" and "Stored energy" were activated in both the desiccated somatic embryos and zygotic embryos when compared to the proteome of mature somatic embryos before desiccation. Based on the specific biochemical changes of important constituents (abscisic acid, raffinose, stachyose, LEA proteins and cruciferins) induced by the desiccation treatment and observed similarities between somatic and zygotic P. abies embryos, we concluded that the somatic embryos approximated to a state of desiccation tolerance. This physiological change could be responsible for the reorientation of Norway spruce somatic embryos toward a stage suitable for germination.

6.
New Phytol ; 233(1): 329-343, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637542

RESUMO

Advanced transcriptome sequencing has revealed that the majority of eukaryotic genes undergo alternative splicing (AS). Nonetheless, little effort has been dedicated to investigating the functional relevance of particular splicing events, even those in the key developmental and hormonal regulators. Combining approaches of genetics, biochemistry and advanced confocal microscopy, we describe the impact of alternative splicing on the PIN7 gene in the model plant Arabidopsis thaliana. PIN7 encodes a polarly localized transporter for the phytohormone auxin and produces two evolutionarily conserved transcripts, PIN7a and PIN7b. PIN7a and PIN7b, differing in a four amino acid stretch, exhibit almost identical expression patterns and subcellular localization. We reveal that they are closely associated and mutually influence each other's mobility within the plasma membrane. Phenotypic complementation tests indicate that the functional contribution of PIN7b per se is minor, but it markedly reduces the prominent PIN7a activity, which is required for correct seedling apical hook formation and auxin-mediated tropic responses. Our results establish alternative splicing of the PIN family as a conserved, functionally relevant mechanism, revealing an additional regulatory level of auxin-mediated plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Raízes de Plantas/metabolismo , Isoformas de Proteínas/genética
7.
Plant Physiol ; 187(1): 103-115, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618129

RESUMO

Together with auxin transport, auxin metabolism is a key determinant of auxin signaling output by plant cells. Enzymatic machinery involved in auxin metabolism is subject to regulation based on numerous inputs, including the concentration of auxin itself. Therefore, experiments characterizing altered auxin availability and subsequent changes in auxin metabolism could elucidate the function and regulatory role of individual elements in the auxin metabolic machinery. Here, we studied auxin metabolism in auxin-dependent tobacco BY-2 cells. We revealed that the concentration of N-(2-oxindole-3-acetyl)-l-aspartic acid (oxIAA-Asp), the most abundant auxin metabolite produced in the control culture, dramatically decreased in auxin-starved BY-2 cells. Analysis of the transcriptome and proteome in auxin-starved cells uncovered significant downregulation of all tobacco (Nicotiana tabacum) homologs of Arabidopsis (Arabidopsis thaliana) DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1), at both transcript and protein levels. Auxin metabolism profiling in BY-2 mutants carrying either siRNA-silenced or CRISPR-Cas9-mutated NtDAO1, as well as in dao1-1 Arabidopsis plants, showed not only the expected lower levels of oxIAA, but also significantly lower abundance of oxIAA-Asp. Finally, ability of DAO1 to oxidize IAA-Asp was confirmed by an enzyme assay in AtDAO1-producing bacterial culture. Our results thus represent direct evidence of DAO1 activity on IAA amino acid conjugates.


Assuntos
Aminoácidos/metabolismo , Dioxigenases/metabolismo , Nicotiana/enzimologia , Proteínas de Plantas/metabolismo , Oxirredução
8.
Nat Plants ; 6(7): 897, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32533128

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Nat Plants ; 6(5): 556-569, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32393881

RESUMO

Directional intercellular transport of the phytohormone auxin mediated by PIN-FORMED (PIN) efflux carriers has essential roles in both coordinating patterning processes and integrating multiple external cues by rapidly redirecting auxin fluxes. PIN activity is therefore regulated by multiple internal and external cues, for which the underlying molecular mechanisms are not fully elucidated. Here, we demonstrate that 3'-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1 (PDK1), which is conserved in plants and mammals, functions as a molecular hub that perceives upstream lipid signalling and modulates downstream substrate activity through phosphorylation. Using genetic analysis, we show that the loss-of-function Arabidopsis pdk1.1 pdk1.2 mutant exhibits a plethora of abnormalities in organogenesis and growth due to defective polar auxin transport. Further cellular and biochemical analyses reveal that PDK1 phosphorylates D6 protein kinase, a well-known upstream activator of PIN proteins. We uncover a lipid-dependent phosphorylation cascade that connects membrane-composition-based cellular signalling with plant growth and patterning by regulating morphogenetic auxin fluxes.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfolipídeos/metabolismo
10.
Planta ; 250(6): 2111-2125, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31584118

RESUMO

MAIN CONCLUSION: Chenopodium ficifoliumflowered under long days despite much lower expression ofFLOWERING LOCUS Thomolog than under short days. Frequent duplications of the FLOWERING LOCUS T (FT) gene across various taxonomic lineages resulted in FT paralogs with floral repressor function, whereas others duplicates maintained their floral-promoting role. The FT gene has been confirmed as the inducer of photoperiodic flowering in most angiosperms analyzed to date. We identified all FT homologs in the transcriptome of Chenopodium ficifolium and in the genome of Chenopodium suecicum, which are closely related to diploid progenitors of the tetraploid crop Chenopodium quinoa, and estimated their expression during photoperiodic floral induction. We found that expression of FLOWERING LOCUS T like 1 (FTL1), the ortholog of the sugar beet floral activator BvFT2, correlated with floral induction in C. suecicum and short-day C. ficifolium, but not with floral induction in C. ficifolium with accelerated flowering under long days. This C. ficifolium accession was induced to flowering without the concomitant upregulation of any FT homolog.


Assuntos
Chenopodium/crescimento & desenvolvimento , Chenopodium/genética , Flores/crescimento & desenvolvimento , Flores/genética , Regulação da Expressão Gênica de Plantas , Magnoliopsida/genética , Regulação para Cima , Magnoliopsida/crescimento & desenvolvimento , Fotoperíodo , Ativação Transcricional
11.
Front Plant Sci ; 10: 118, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873184

RESUMO

Somatic embryogenesis techniques have been developed for most coniferous species, but only using very juvenile material. To extend the techniques' scope, better integrated understanding of the key biological, physiological and molecular characteristics of embryogenic state is required. Therefore, embryonal masses (EMs) and non-embryogenic calli (NECs) have been compared during proliferation at multiple levels. EMs and NECs originating from a single somatic embryo (isogenic lines) of each of three unrelated genotypes were used in the analyses, which included comparison of the lines' anatomy by transmission light microscopy, transcriptomes by RNAseq Illumina sequencing, proteomes by free-gel analysis, contents of endogenous phytohormones (indole-3-acetic acid, cytokinins and ABA) by LC-MS analysis, and soluble sugar contents by HPLC. EMs were characterized by upregulation (relative to levels in NECs) of transcripts, proteins, transcription factors and active cytokinins associated with cell differentiation accompanied by histological, carbohydrate content and genetic markers of cell division. In contrast, NECs were characterized by upregulation (relative to levels in EMs) of transcripts, proteins and products associated with responses to stimuli (ABA, degradation forms of cytokinins, phenols), oxidative stress (reactive oxygen species) and carbohydrate storage (starch). Sub-Network Enrichment Analyses that highlighted functions and interactions of transcripts and proteins that significantly differed between EMs and NECs corroborated these findings. The study shows the utility of a novel approach involving integrated multi-scale transcriptomic, proteomic, biochemical, histological and anatomical analyses to obtain insights into molecular events associated with embryogenesis and more specifically to the embryogenic state of cell in Douglas-fir.

12.
Front Plant Sci ; 9: 1736, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538715

RESUMO

Ultraviolet-B (UV-B) radiation is a key environmental signal which initiates diverse responses that affect the metabolism, development, and viability of plants. In keeping with our previous studies, we concentrated primarily on how UV-B radiation affects Norway spruce [Picea abies (L.) Karst.] somatic embryo maturation and how phenolics and polyamines (PAs) are linked to the defense response invoked by UV-B irradiation. We treated clusters of Norway spruce embryogenic culture (EC) with UV-B during the five stages of embryo maturation (early, cylindrical, precotyledonary, cotyledonary, and mature embryos). For the first time, we take an advantage of the unique environmental scanning electron microscope AQUASEM II to characterize somatic embryos in their native state. The severity of the irradiation effect on embryonal cell viability was shown to be dependent on the intensity of radiation as well as the stage of embryo development, and might be related to the formation of protoderm. The response of early embryos was characterized by an increase in malondialdehyde (MDA), a marked decrease in PA contents and a decline in phenolics. The reduced ability to activate the defense system seems to be responsible not only for the severe cell damage and decrease in viability but also for the inhibition of embryo development. The significant reduction in spermidine (Spd), which has been reported to be crucial for the somatic embryo development of several coniferous species, may be causally linked to the limited development of embryos. The pronounced decrease in cell wall-bound ferulic acid might correspond to failure of somatic embryos to reach more advanced stages of development. Embryos at later stages of development showed stress defense responses that were more efficient against UV-B exposure.

13.
Front Plant Sci ; 9: 1283, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30237806

RESUMO

Conifer somatic embryogenesis (SE) is a process driven by exogenously supplied plant growth regulators (PGRs). Exogenous PGRs and endogenous phytohormones trigger particular ontogenetic events. Complex mechanisms involving a number of endogenous phytohormones control the differentiation of cells and tissues, as well as the establishment of structures and organs. Most of the mechanisms and hormonal functions in the SE of conifers have not yet been described. With the aim to better understand these mechanisms, we provided detailed analysis of the spectrum of endogenous phytohormones over the course of SE in Norway spruce (Picea abies). Concentrations of endogenous phytohormones including auxins, cytokinins (CKs), abscisic acid (ABA), jasmonates, and salicylic acid (SA) in somatic P. abies embryos were analyzed by HPLC-ESI-MS/MS. The results revealed that the concentrations of particular phytohormone classes varied substantially between proliferation, maturation, desiccation, and germination. Endogenous ABA showed a maximum concentration at the maturation stage, which reflected the presence of exogenous ABA in the medium and demonstrated its efficient perception by the embryos as a prerequisite for their further development. Auxins also had concentration maxima at the maturation stage, suggesting a role in embryo polarization. Endogenous jasmonates were detected in conifer somatic embryos for the first time, and reached maxima at germination. According to our knowledge, we have presented evidence for the involvement of the non-indole auxin phenylacetic acid, cis-zeatin- and dihydrozeatin-type CKs and SA in SE for the first time. The presented results represent the currently most comprehensive overview of plant hormone levels in embryos throughout the whole process of conifer SE. The differences in concentrations of various classes of phytohormones over the proliferation, maturation, desiccation, and germination in somatic P. abies embryos clearly indicate correlations between endogenous phytohormone profiles and particular developmental stages of the SE of conifers.

14.
BMC Plant Biol ; 18(1): 164, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097018

RESUMO

BACKGROUND: To explore poorly understood differences between primary and subsequent somatic embryogenic lines of plants, we induced secondary (2ry) and tertiary (3ry) lines from cotyledonary somatic embryos (SEs) of two Douglas-fir genotypes: SD4 and TD17. The 2ry lines exhibited significantly higher embryogenic potential (SE yields) than the 1ry lines initiated from zygotic embryos (SD4, 2155 vs 477; TD17, 240 vs 29 g- 1 f.w.). Moreover, we observed similar differences in yield between 2ry and 3ry lines of SD4 (2400 vs 3921 g- 1 f.w.). To elucidate reasons for differences in embryogenic potential induced by repetitive somatic embryogenesis we then compared 2ry vs 1ry and 2ry vs 3ry lines at histo-cytological (using LC-MS/MS) and proteomic levels. RESULTS: Repetitive somatic embryogenesis dramatically improved the proliferating lines' cellular organization (genotype SD4's most strongly). Frequencies of singulated, bipolar SEs and compact polyembryogenic centers with elongated suspensors and apparently cleavable embryonal heads increased in 2ry and (even more) 3ry lines. Among 2300-2500 identified proteins, 162 and 228 were classified significantly differentially expressed between 2ry vs 1ry and 3ry vs 2ry lines, respectively, with special emphasis on "Proteolysis" and "Catabolic process" Gene Ontology categories. Strikingly, most of the significant proteins (> 70%) were down-regulated in 2ry relative to 1ry lines, but up-regulated in 3ry relative to 2ry lines, revealing a down-up pattern of expression. GO category enrichment analyses highlighted the opposite adjustments of global protein patterns, particularly for processes involved in chitin catabolism, lignin and L-phenylalanine metabolism, phenylpropanoid biosynthesis, oxidation-reduction, and response to karrikin. Sub-Network Enrichment Analyses highlighted interactions between significant proteins and both plant growth regulators and secondary metabolites after first (especially jasmonic acid, flavonoids) and second (especially salicylic acid, abscisic acid, lignin) embryogenesis cycles. Protein networks established after each induction affected the same "Plant development" and "Defense response" biological processes, but most strongly after the third cycle, which could explain the top embryogenic performance of 3ry lines. CONCLUSIONS: This first report of cellular and molecular changes after repetitive somatic embryogenesis in conifers shows that each cycle enhanced the structure and singularization of EMs through modulation of growth regulator pathways, thereby improving the lines' embryogenic status.


Assuntos
Técnicas de Embriogênese Somática de Plantas/métodos , Pseudotsuga/embriologia , Sementes/crescimento & desenvolvimento , Redes Reguladoras de Genes , Espectrometria de Massas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Proteômica , Pseudotsuga/crescimento & desenvolvimento , Pseudotsuga/metabolismo , Sementes/metabolismo
15.
Oecologia ; 186(2): 459-470, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29214471

RESUMO

Plant-soil feedback (PSF) is a fundamental mechanism explaining plant community composition. Two-phase experiments, i.e., conditioning and feedback, represent a common methodology to study PSF. The duration of the conditioning phase varies among studies and the PSF observed is often explained by its biotic component. Little is known about the temporal variation of PSF and its abiotic component. As early life stages are crucial for plant establishment, we grew Rorippa austriaca in soil conditioned over 2, 4, 6 or 8 weeks by a conspecific or a co-occurring species, Agrostis capillaris. For each conditioning duration, we analysed the soil chemical properties and the direction and intensity of intra- or inter-specific feedbacks. With increasing duration, the negative intra- and inter-specific feedbacks became stronger and weaker, respectively. The inter-specific feedback was more negative than the intra-specific feedback at 2 weeks and this reversed thereafter. The Mg content decreased with conditioning duration whatever the conditioning species was. With increasing duration, conditioning by R. austriaca strongly decreased pH, while A. capillaris did not affect pH. The K and P contents were not affected by the conditioning duration and were higher in R. austriaca soil than in A. capillaris soil. Our results suggest that not only conditioning species but also duration of conditioning phase may affect the magnitude of PSF. The changes in soil chemical properties linked to the conditioning species or the conditioning phase duration may drive the feedbacks by affecting plant growth directly or via the interacting microbial communities.


Assuntos
Plantas , Solo , Retroalimentação , Desenvolvimento Vegetal , Microbiologia do Solo
16.
Plant Sci ; 221-222: 90-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24656339

RESUMO

The role of the actin cytoskeleton in somatic embryo development was investigated using latrunculin B and cytochalasin D. Brief treatments (1h) with either drug at the start of maturation fragmented the actin in suspensor cells and/or depolymerized actin filaments in meristematic cells. The drugs targeted different cells: latB primarily affected the suspensor cells, but cchD damaged both suspensor and meristematic cells. Lethal damage to the meristematic and suspensor cells was observed when the drugs were applied throughout the maturation period, although the severity of this effect depended on their concentrations. The drugs' effects on the yield of mature somatic embryos were investigated by applying them to embryo cultures throughout the maturation period or for one week at three different points in the maturation process: immediately prior to the start of maturation, during the first week of maturation, and during the fourth week of maturation. The strongest effects were observed when the drugs were applied at the start of maturation. Under these conditions, latB destroyed the suspensors, eliminating the underdeveloped embryos that depend on them. This accelerated the development of embryos that were capable of separating from the suspensors. Thus, while the total number of embryos at the end of the maturation period was lower than in untreated control cultures, the surviving mature embryos were of high quality. cchD treatment at the start of maturation strongly inhibited embryo development. Drug treatment at the end of the maturation period did not significantly affect embryo development: latB caused no change in the yield of somatic embryos, but cchD treatment increased the number of malformed embryos compared to untreated controls.


Assuntos
Actinas/antagonistas & inibidores , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citocalasina D/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Picea/efeitos dos fármacos , Técnicas de Embriogênese Somática de Plantas , Tiazolidinas/farmacologia , Actinas/metabolismo , Microscopia Confocal , Inibidores da Síntese de Ácido Nucleico/administração & dosagem , Picea/embriologia , Sementes/efeitos dos fármacos , Sementes/embriologia
17.
Tree Physiol ; 30(10): 1335-48, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20732957

RESUMO

Our study focused on the possible association between the cryotolerance of Norway spruce (Picea abies (L.) Karst.) embryogenic cultures and the anatomical structures of their embryogenic suspensor mass (ESM), their growth rate and their content of endogenous polyamines (PAs). The anatomical characteristics and PA content during cryopreservation and regrowth were studied in the ESMs of AFO 541 and C110 cultures, which have comparable ESM anatomy but diverse growth rates, PA content and regeneration abilities after cryopreservation. Different levels of tolerance to exogenous treatment were already apparent after transfer of the ESMs to liquid media. The endogenous free PAs were maintained at high levels, with spermidine being the predominant PA in the ESM of AFO 541, while in the ESM of C110 the content of putrescine and spermidine was almost identical and rather low, the content of spermidine being approximately one-third that in the ESM of AFO 541. Osmotic pretreatment, using a double application of sorbitol followed by an application of dimethyl sulfoxide (DMSO) resulted in the continual disintegration of polyembryogenic centers and suspensors in both cell lines. A continual decrease in the level of PAs was observed during the cell osmotic pretreatment. The cells that retained their viability and regrowth ability after cryopreservation were the meristematic cells inside the embryonal heads and the cells in the intermediate area between suspensor and meristems. Restoration of AFO 541 growth after cryopreservation was almost immediate; however, the C110 ESM culture regrew with difficulty, often exhibiting callogenesis. High levels of PA-soluble conjugates and an increase in the amount of PAs bound to high-molecular-mass substances was observed in cells of AFO 541 on Day 6 after thawing and also to some extent on Day 11. On Day 21 after thawing, the amount of free putrescine and spermidine in the AFO 541 cells reached the level observed in the suspension culture before the cryotreatment. The extremely low level of PAs determined in the ESM of C110 3 weeks after thawing agreed with the cell viability and rate of regrowth observed in this culture. The possible role of PAs in the process of cryopreservation of Norway spruce cultures is discussed.


Assuntos
Criopreservação/métodos , Congelamento , Picea/crescimento & desenvolvimento , Linhagem Celular , Clima Frio , Dimetil Sulfóxido/farmacologia , Picea/anatomia & histologia , Picea/embriologia , Picea/genética , Poliaminas/metabolismo , Sementes/anatomia & histologia , Sementes/citologia , Sementes/efeitos dos fármacos , Sementes/fisiologia , Sorbitol/farmacologia
18.
BMC Plant Biol ; 10: 89, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20478025

RESUMO

BACKGROUND: Somatic embryogenesis in spruce is a process of high importance for biotechnology, yet it comprises of orchestrated series of events whose cellular and molecular details are not well understood. In this study, we examined the role of actin cytoskeleton during somatic embryogenesis in Norway spruce line AFO 541 by means of anti-actin drugs. RESULTS: Application of low doses (50-100 nM) of latrunculin B (Lat B) during the maturation of somatic embryos predominantly killed suspensor cells while leaving the cells in meristematic centres alive, indicating differential sensitivity of actin in the two cell types. The treatment resulted in faster development of more advanced embryos into mature somatic embryos and elimination of insufficiently developed ones. In searching for the cause of the differential actin sensitivity of the two cell types, we analysed the composition of actin isoforms in the culture and isolated four spruce actin genes. Analysis of their expression during embryo maturation revealed that one actin isoform was expressed constitutively in both cell types, whereas three actin isoforms were expressed predominantly in suspensor cells and their expression declined during the maturation. The expression decline was greatly enhanced by Lat B treatment. Sequence analysis revealed amino-acid substitutions in the Lat B-binding site in one of the suspensor-specific actin isoforms, which may result in a different binding affinity for Lat B. CONCLUSIONS: We show that manipulating actin in specific cell types in somatic embryos using Lat B treatment accelerated and even synchronized the development of somatic embryos and may be of practical use in biotechnology.


Assuntos
Actinas/metabolismo , Picea/crescimento & desenvolvimento , Actinas/antagonistas & inibidores , Substituição de Aminoácidos , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citoesqueleto/efeitos dos fármacos , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Picea/embriologia , Isoformas de Proteínas/metabolismo , RNA de Plantas/genética , Alinhamento de Sequência , Tiazolidinas/farmacologia , Técnicas de Cultura de Tecidos
19.
Tree Physiol ; 29(10): 1287-98, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19706648

RESUMO

The polyamine (PA) contents and activities of PA biosynthetic enzymes in Norway spruce somatic embryos [Picea abies L. (Karst.), genotype AFO 541] were studied in relation to anatomical changes during their development, from proliferation to germination, and changes in these variables associated with the germination of mature somatic and zygotic embryos were compared. Activities of PA biosynthetic enzymes steadily increased during the development of somatic embryos, from embryogenic suspensor mass until early cotyledonary stages. In these stages, the spermidine (Spd) level was significantly higher than the putrescine (Put) level, and the increases coincided with the sharp increases in S-adenosylmethionine decarboxylase activity in the embryos. The biosynthetic enzyme activity subsequently declined in mature cotyledonary embryos, accompanied by sharp reductions in PA contents, especially in cellular Put contents in embryos from 6 weeks old through the desiccation phase (although the spermine level significantly increased during the desiccation phase), resulting in a shift in the Spd/Put ratio from ca. 2 in early cotyledonary embryos to around 10 after 3 weeks of desiccation. In mature zygotic embryos, Spd contents were twofold lower, but Put levels were higher, than in mature somatic embryos, hence their Spd/Put ratio was substantially lower (ca. 2, in both embryos and megagametophytes). In addition, the PA synthesis activity profiles in the embryos differed (ornithine decarboxylase and arginine decarboxylase activities predominating in mature somatic and zygotic embryos, respectively). The start of germination was associated with a rise in PA biosynthetic activity in the embryos of both origins, which was accompanied by a marked increase in Put contents in somatic embryos, resulting in the decline of Spd/Put ratio to about 2, similar to the ratio in mature and germinating zygotic embryos. The accumulation of high levels of PAs in somatic embryos may be causally linked to their lower germinability than in zygotic embryos.


Assuntos
Germinação/fisiologia , Picea/metabolismo , Poliaminas/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Putrescina/metabolismo , Espermidina/metabolismo
20.
Plant Cell Rep ; 27(3): 435-41, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17968553

RESUMO

Maturation of Norway spruce (Picea abies L.) somatic embryos is induced by abscisic acid (ABA). Several proteins were proven to be involved in ABA sensing including ABI3/VP1 transcription factors and their orthologue PaVP1 was characterized in spruce. To evaluate the role of PaVP1 both in embryogenic potential and in the process of embryo maturation, we studied PaVP1 expression in lines with contrast embryogenic capacities in parallel with detailed anatomical characterization. PaVP1 expression was determined by northern blot hybridisation, which revealed presence of two differentially regulated VP1-like B3-domain transcripts. Full-length PaVP1 transcript level was negligible in all lines on the proliferation media, but it differed strongly on the maturation media containing ABA. In non-embryogenic line, lacking any differentiated structures, the transcript remained undetectable. In contrast, in embryogenic lines with meristematic centres attached to suspensor cells, PaVP1 expression increased strongly after transition onto the maturation media. In highly embryogenic lines, it kept on a high level until the embryos reached cotyledonary stage, while in developmentally arrested line incapable to form mature embryos, the expression dropped down in connection with advanced disintegration of the meristematic centres. Removal of ABA from the maturation media after 2 weeks of maturation resulted in aberrant embryo development and rapid decrease in PaVP1 expression, indicating the impact of exogenously supplemented ABA on both initiation and maintenance of PaVP1 expression and proper embryo development. Since permanently high or increasing PaVP1 transcript levels accompanied proper embryo development in all experiments, it could be regarded as a good marker of this process.


Assuntos
Picea/embriologia , Picea/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Ácido Abscísico/farmacologia , Processamento Alternativo , Northern Blotting , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Picea/efeitos dos fármacos , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA