Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Gene ; 923: 148574, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38768876

RESUMO

Cordyceps militaris is a medicinal entomopathogenic fungus containing valuable biometabolites for pharmaceutical applications. Its genetic inheritance and environmental factors play a crucial role in the production of biomass enriched with cordycepin. While temperature is a crucial controlled parameter for fungal cultivation, its impacts on growth and metabolite biosynthesis remains poorly characterized. This study aimed to investigate the metabolic responses and cordycepin production of C. militaris strain TBRC6039 under various temperature conditions through transcriptome analysis. Among 9599 expressed genes, 576 genes were significantly differentially expressed at culture temperatures of 15 and 25 °C. The changes in the transcriptional responses induced by these temperatures were found in several metabolisms involved in nutrient assimilation and energy source, including amino acids metabolism (e.g., glycine, serine and threonine metabolism) and lipid metabolism (e.g., biosynthesis of unsaturated fatty acids and steroid biosynthesis). At the lower temperature (15 °C), the biosynthetic pathways of lipids, specifically ergosterol and squalene, were the target for maintaining membrane function by transcriptional upregulation. Our study revealed the responsive mechanisms of C. militaris in acclimatization to temperature conditions that provide an insight on physiological manipulation for the production of metabolites by C. militaris.


Assuntos
Cordyceps , Temperatura , Transcriptoma , Cordyceps/genética , Cordyceps/crescimento & desenvolvimento , Cordyceps/metabolismo , Metabolismo dos Lipídeos/genética , Aclimatação , Desoxiadenosinas/biossíntese , Desoxiadenosinas/genética , Ácidos Graxos/análise , Ácidos Graxos/biossíntese , Perfilação da Expressão Gênica , Genes Fúngicos/genética
2.
Biology (Basel) ; 13(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38666888

RESUMO

Mucor circinelloides WJ11 is a lipid-producing strain with industrial potential. A holistic approach using gene manipulation and bioprocessing development has improved lipid production and the strain's economic viability. However, the systematic regulation of lipid accumulation and carotenoid biosynthesis in M. circinelloides remains unknown. To dissect the metabolic mechanism underlying lipid and carotenoid biosynthesis, transcriptome analysis and reporter metabolites identification were implemented between the wild-type (WJ11) and ΔcarRP WJ11 strains of M. circinelloides. As a result, transcriptome analysis revealed 10,287 expressed genes, with 657 differentially expressed genes (DEGs) primarily involved in amino acid, carbohydrate, and energy metabolism. Integration with a genome-scale metabolic model (GSMM) identified reporter metabolites in the ΔcarRP WJ11 strain, highlighting metabolic pathways crucial for amino acid, energy, and nitrogen metabolism. Notably, the downregulation of genes associated with carotenoid biosynthesis and acetyl-CoA generation suggests a coordinated relationship between the carotenoid and fatty acid biosynthesis pathways. Despite disruptions in the carotenoid pathway, lipid production remains stagnant due to reduced acetyl-CoA availability, emphasizing the intricate metabolic interplay. These findings provide insights into the coordinated relationship between carotenoid and fatty acid biosynthesis in M. circinelloides that are valuable in applied research to design optimized strains for producing desired bioproducts through emerging technology.

3.
Biology (Basel) ; 13(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38534409

RESUMO

The genome-scale metabolic model (GSMM) of Cordyceps militaris provides a comprehensive basis of carbon assimilation for cell growth and metabolite production. However, the model with a simple mass balance concept shows limited capability to probe the metabolic responses of C. militaris under light exposure. This study, therefore, employed the transcriptome-integrated GSMM approach to extend the investigation of C. militaris's metabolism under light conditions. Through the gene inactivity moderated by metabolism and expression (GIMME) framework, the iPS1474-tiGSMM model was furnished with the transcriptome data, thus providing a simulation that described reasonably well the metabolic responses underlying the phenotypic observation of C. militaris under the particular light conditions. The iPS1474-tiGSMM obviously showed an improved prediction of metabolic fluxes in correlation with the expressed genes involved in the cordycepin and carotenoid biosynthetic pathways under the sucrose culturing conditions. Further analysis of reporter metabolites suggested that the central carbon, purine, and fatty acid metabolisms towards carotenoid biosynthesis were the predominant metabolic processes responsible in light conditions. This finding highlights the key responsive processes enabling the acclimatization of C. militaris metabolism in varying light conditions. This study provides a valuable perspective on manipulating metabolic genes and fluxes towards the target metabolite production of C. militaris.

4.
Sci Rep ; 14(1): 5805, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461361

RESUMO

The association between the gut mycobiome and its potential influence on host metabolism in the Thai Cohort was assessed. Two distinct predominant enterotypes, Saccharomyces (Sa) and Aspergillus/Penicillium (Ap/Pe) showed differences in gut mycobiota diversity and composition. Notably, the Sa enterotype exhibited lower evenness and richness, likely due to the prevalence of Saccharomyces, while both enterotypes displayed unique metabolic behaviors related to nutrient metabolism and body composition. Fiber consumption was positively correlated with adverse body composition and fasting glucose levels in individuals with the Sa enterotype, whereas in the Ap/Pe enterotype it was positively correlated with fat and protein intake. The metabolic functional analysis revealed the Sa enterotype associated with carbohydrate metabolism, while the Ap/Pe enterotype involved in lipid metabolism. Very interestingly, the genes involved in the pentose and glucuronate interconversion pathway, such as polygalacturonase and L-arabinose-isomerase, were enriched in the Sa enterotype signifying a metabolic capacity for complex carbohydrate degradation and utilization of less common sugars as energy sources. These findings highlight the interplay between gut mycobiome composition, dietary habits, and metabolic outcomes within the Thai cohort studies.


Assuntos
Microbioma Gastrointestinal , Micobioma , Humanos , Tailândia , Microbioma Gastrointestinal/genética , Dieta , Nutrientes
5.
Gene ; 896: 148045, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042219

RESUMO

The black soldier fly (Hermetia illucens) has emerged as a significant insect species in the decomposition of organic waste for sustainable agricultural practices. Due to its remarkable characteristics and performance, H. illucens is increasingly utilised for insect farming, particularly for industrial-scale rearing throughout the world. In this study, we employed whole-genome sequencing to annotate the gene and protein functions of H. illucens and to explore the functional genomics related to nutrients and energy. As a result, a genome size of H. illucens strain KUP 1.68 Gb with a GC content of 42.13 % was achieved. Of the 14,036 coding sequences, we determined the function of 12,046 protein-coding genes. Based on metabolic functional assignment, we classified 4,218 protein-coding genes; the main category was metabolism (32.86 %). Comparative genomic analysis across the other H. illucens strain and insect species revealed that the major metabolic gene functions and pathways related to nutrient and energy sources of H. illucens KUP are involved in key amino acid metabolism (e.g., cysteine and methionine) as well as fatty acid biosynthesis and glycerolipid metabolism. These findings underscore the metabolic capability and versatility of H. illucens, which is regarded as a potential source of proteins and lipids. Our study contributes to the knowledge regarding the feed utilisation of H. illucens and offers insights into transforming waste into valuable products. H. illucens has the potential to create globally sustainable nutrients and environmentally friendly solutions, aligning with the goal of responsible resource utilisation.


Assuntos
Dípteros , Animais , Larva/metabolismo , Dípteros/genética , Metabolismo dos Lipídeos , Ração Animal/análise , Nutrientes
6.
Microb Cell Fact ; 22(1): 253, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071331

RESUMO

BACKGROUND: Cordycepin (3'-deoxyadenosine) is an important bioactive compound in medical and healthcare markets. The drawbacks of commercial cordycepin production using Cordyceps spp. include long cultivation periods and low cordycepin yields. To overcome these limitations and meet the increasing market demand, the efficient production of cordycepin by the GRAS-status Aspergillus oryzae strain using a synthetic biology approach was developed in this study. RESULTS: An engineered strain of A. oryzae capable of cordycepin production was successfully constructed by overexpressing two metabolic genes (cns1 and cns2) involved in cordycepin biosynthesis under the control of constitutive promoters. Investigation of the flexibility of carbon utilization for cordycepin production by the engineered A. oryzae strain revealed that it was able to utilize C6-, C5-, and C12-sugars as carbon sources, with glucose being the best carbon source for cordycepin production. High cordycepin productivity (564.64 ± 9.59 mg/L/d) was acquired by optimizing the submerged fermentation conditions. CONCLUSIONS: This study demonstrates a powerful production platform for bioactive cordycepin production by A. oryzae using a synthetic biology approach. An efficient and cost-effective fermentation process for cordycepin production using an engineered strain was established, offering a powerful alternative source for further upscaling.


Assuntos
Aspergillus oryzae , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Desoxiadenosinas/metabolismo , Fermentação , Carbono/metabolismo
7.
Biology (Basel) ; 12(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37759661

RESUMO

Atopic dermatitis (AD) is a prevalent inflammatory skin disease that has been associated with changes in gut microbial composition in early life. However, there are limited longitudinal studies examining the gut microbiome in AD. This study aimed to explore taxonomy and metabolic functions across longitudinal gut microbiomes associated with AD in early childhood from 9 to 30 months of age using integrative data analysis within the Thai population. Our analysis revealed that gut microbiome diversity was not different between healthy and AD groups; however, significant taxonomic differences were observed. Key gut bacteria with short-chain fatty acids (SCFAs) production potentials, such as Anaerostipes, Butyricicoccus, Ruminococcus, and Lactobacillus species, showed a higher abundance in the AD group. In addition, metabolic alterations between the healthy and AD groups associated with vitamin production and host immune response, such as biosynthesis of menaquinol, succinate, and (Kdo)2-lipid A, were observed. This study serves as the first framework for monitoring longitudinal microbial imbalances and metabolic functions associated with allergic diseases in Thai children during early childhood.

8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(11): 159381, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625782

RESUMO

Aurantiochytrium sp., a marine thraustochytrid possesses a remarkable ability to produce lipid rich in polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA). Although gene regulation underlying lipid biosynthesis has been previously reported, proteomic analysis is still limited. In this study, high DHA accumulating strain Aurantiochytrium sp. SW1 has been used as a study model to elucidate the alteration in proteome profile under different cultivation phases i.e. growth, nitrogen-limitation and lipid accumulation. Of the total of 5146 identified proteins, 852 proteins were differentially expressed proteins (DEPs). The largest number of DEPs (488 proteins) was found to be uniquely expressed between lipid accumulating phase and growth phase. Interestingly, there were up-regulated proteins involved in glycolysis, glycerolipid, carotenoid and glutathione metabolism which were preferable metabolic routes towards lipid accumulation and DHA production as well as cellular oxidative defence. Integrated proteomic and transcriptomic data were also conducted to comprehend the gene and protein regulation underlying the lipid and DHA biosynthesis. A significant up-regulation of acetyl-CoA synthetase was observed which suggests alternative route of acetate metabolism for acetyl-CoA producer. This study presents the holistic routes underlying lipid accumulation and DHA production in Aurantiochytrium sp. SW1 and other relevant thraustochytrid.


Assuntos
Ácidos Docosa-Hexaenoicos , Estramenópilas , Ácidos Docosa-Hexaenoicos/metabolismo , Acetilcoenzima A/metabolismo , Proteômica , Estramenópilas/genética , Estramenópilas/metabolismo , Perfilação da Expressão Gênica
9.
Phys Chem Chem Phys ; 25(20): 14311-14323, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37183444

RESUMO

Insights into the structures, functions and dynamics of Cordyceps militaris (C. militaris) sugar transporters are necessary for understanding their versatile metabolic capability for fungal growth. The sequence-function relationship study of 85 C. militaris sugar transporters showed that there is a gap between phylogenetic-based subfamily classification and their functions. Beyond protein sequences, structural modeling and principal component analysis of the structural ensemble revealed the different folds of the Car and Org subfamilies. Performing channel detection and network analysis found that the Alp and Hex subfamilies can be specifically distinguished from others by the betweenness of channel residues. Signature dynamics analysis further suggested that the Hex subfamily demonstrates different dynamics, with high flexibility at the H1 region in TM11. Furthermore, the H1 region as an allosteric site was examined by network parameter calculations that guided allosteric pathways between this region and the channel cavity. Together with gene expression data of C. militaris, e.g., Hex06741 in the Hex subfamily, it was promisingly expressed when sugar utilization was altered. This work demonstrates an in silico framework for investigating C. militaris sugar transporters as an example case study of the allosteric activity of the Hex subfamily and can facilitate sugar transporter engineering design that can further optimize the preferable sugar utilization and fermentation process of C. militaris.


Assuntos
Cordyceps , Cordyceps/química , Cordyceps/metabolismo , Regulação Alostérica , Filogenia , Sequência de Aminoácidos , Açúcares
10.
Curr Opin Biotechnol ; 81: 102939, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075529

RESUMO

The use of Cordyceps species for the manufacture of natural products has been established; however, the tremendous advances observed in recent years in genetic engineering and molecular biology have revolutionized the optimization of Cordyceps as cell factories and drastically expanded the biotechnological potential of these fungi. Here, we present a review of systems and synthetic biology studies of Cordyceps and their implications for fungal biology and industrial applications. We summarize the current status of synthetic biology for enhancing targeted metabolites in Cordyceps species, such as cordycepin, adenosine, polysaccharide, and pentostatin. Progress in the systems and synthetic biology of Cordyceps provides a strategy for comprehensively comprehensive controlling efficient cell factories of natural bioproducts and novel synthetic biology toolbox for targeted engineering.


Assuntos
Cordyceps , Cordyceps/genética , Cordyceps/metabolismo , Biologia de Sistemas , Biotecnologia , Adenosina/metabolismo , Genômica
11.
Artigo em Inglês | MEDLINE | ID: mdl-36907245

RESUMO

Aurantiochytrium sp. SW1, a marine thraustochytrid, has been regarded as a potential candidate as a docosahexaenoic acid (DHA) producer. Even though the genomics of Aurantiochytrium sp. are available, the metabolic responses at a systems level are largely unknown. Therefore, this study aimed to investigate the global metabolic responses to DHA production in Aurantiochytrium sp. through transcriptome and genome-scale network-driven analysis. Of a total of 13,505 genes, 2527 differentially expressed genes (DEGs) were identified in Aurantiochytrium sp., unravelling the transcriptional regulations behinds lipid and DHA accumulation. The highest number of DEG were found for pairwise comparison between growth phase and lipid accumulating phase where a total of 1435 genes were down-regulated with 869 genes being up-regulated. These uncovered several metabolic pathways that contributing in DHA and lipid accumulation including amino acid and acetate metabolism which involve in the generation of crucial precursors. Upon applying network-driven analysis, hydrogen sulphide was found as potential reporter metabolite that could be associated with the genes related to acetyl-CoA synthesis for DHA production. Our findings suggest that the transcriptional regulation of these pathways is a ubiquitous feature in response to specific cultivation phases during DHA overproduction in Aurantiochytrium sp. SW1.


Assuntos
Ácidos Docosa-Hexaenoicos , Estramenópilas , Estramenópilas/genética , Estramenópilas/metabolismo , Transcriptoma , Regulação da Expressão Gênica , Metabolismo dos Lipídeos
12.
Rice (N Y) ; 16(1): 6, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739313

RESUMO

Plant growth-promoting endophytic (PGPE) actinomycetes have been known to enhance plant growth and mitigate plant from abiotic stresses via their PGP-traits. In this study, PGPE Streptomyces sp. GKU 895 promoted growth and alleviated salt tolerance of salt-susceptible rice cultivar IR29 by augmentation of plant weight and declined ROS after irrigation with 150 mM NaCl in a pot experiment. Transcriptome analysis of IR29 exposed to the combination of strain GKU 895 and salinity demonstrated up and downregulated differentially expressed genes (DEGs) classified by gene ontology and plant reactome. Streptomyces sp. GKU 895 induced changes in expression of rice genes including transcription factors under salt treatment which involved in growth and development, photosynthesis, plant hormones, ROS scavenging, ion transport and homeostasis, and plant-microbe interactions regarding pathogenesis- and symbiosis-related proteins. Taken together, these data demonstrate that PGPE Streptomyces sp. GKU 895 colonized and enhanced growth of rice IR29 and triggered salt tolerance phenotype. Our findings suggest that utilisation of beneficial endophytes in the saline fields could allow for the use of such marginal soils for growing rice and possibly other crops.

13.
Front Microbiol ; 14: 1333500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249488

RESUMO

Programmed cell death (PCD) is the collective term for the intrinsically regulated death of cells. Various types of cell death are triggered by their own programmed regulation during the growth and development of organisms, as well as in response to environmental and disease stresses. PCD encompasses apoptosis, pyroptosis, necroptosis, autophagy, and other forms. PCD plays a crucial role not only in the growth and development of organisms but also in serving as a component of the host innate immune defense and as a bacterial virulence strategy employed by pathogens during invasion. The zoonotic pathogen Salmonella has the ability to modulate multiple forms of PCD, including apoptosis, pyroptosis, necroptosis, and autophagy, within the host organism. This modulation subsequently impacts the bacterial infection process. This review aims to consolidate recent findings regarding the mechanisms by which Salmonella initiates and controls cell death signaling, the ways in which various forms of cell death can impede or restrict bacterial proliferation, and the interplay between cell death and innate immune pathways that can counteract Salmonella-induced suppression of host cell death. Ultimately, these insights may contribute novel perspectives for the diagnosis and treatment of clinical Salmonella-related diseases.

14.
Front Cell Infect Microbiol ; 12: 948237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262184

RESUMO

Salmonella Entertidis (SE) often causes persistent infections and egg contamination in laying ducks. Hcp, the core structural and effector proteins of the Type VI Secretion System (T6SS) in SE, contributes to bacterial invasion, adhesion and virulence. However, little is known about the effect of Hcp on the host's infection responses and egg contamination incidences in duck. Herein, we generated an hcp deletion mutant SE MY1△hcp and detected its ability to invade duck granulosa cells (dGCs) and contaminate eggs. In comparison with MY1-infected group, the SE adhesion decreased by 15.96% in MY1△hcp-infected dGCs, and the apoptosis in MY1△hcp-infected dGCs decreased by 26.58% and 30.99% at 3 and 6 hours postinfection, respectively. However, the expression levels of immunogenic genes TLR4, NOD1, TNFα, IL-1ß and proinflammatory cytokines IL-6, IL-1ß, TNF-α release were markedly lower in the dGCs inoculated with MY1△hcp than that of the wild type. Besides, the laying ducks were challenged with MY1 or MY1△hcp in vivo, respectively. The lower egg production and higher egg contamination were observed in MY1-infected ducks in comparison with MY1△hcp-infected birds. Furthermore, the host's infection response of differentially abundant proteins (DAPs) to Salmonella effector Hcp was identified using quantitative proteomics. A total of 164 DAPs were identified between the MY1- and MY1△hcp-infected cells, which were mainly engaged in the immune, hormone synthesis, cell proliferation and cell apoptotic process. Among them, STAT3, AKT1, MAPK9, MAPK14, and CREBBP were the center of the regulatory network, which might serve as key host response regulators to bacterial Hcp. In conclusion, we demonstrated that effector Hcp contributed to not only SE invasion, induction of dGCs apoptosis, and trigger of immune responses, but also enhanced contamination incidences. Also, the STAT3, AKT1, MAPK9, MAPK14, and CREBBP were identified as host's infection response regulators of bacterial Hcp in duck. Overall, these results not only offered a novel evidence of SE ovarian transmission but also identified some promising candidate regulators during SE infection.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Doenças das Aves Domésticas , Salmonelose Animal , Sistemas de Secreção Tipo VI , Animais , Feminino , Galinhas/microbiologia , Patos , Hormônios , Incidência , Interleucina-6 , Doenças das Aves Domésticas/microbiologia , Salmonella enteritidis/genética , Salmonelose Animal/microbiologia , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa
15.
Synth Syst Biotechnol ; 7(4): 1148-1158, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36101898

RESUMO

A parallel screening of 27 different flavonoids and chalcones was conducted using 6 artificial naringenin-activated riboswitches (M1, M2, M3, O, L and H). A quantitative structure-property relationship approach was applied to understand the physicochemical properties of the flavonoid structures resulting in specificity differences relied on the fluorescence intensity of a green fluorescent protein reporter. Robust models of riboswitches M1, M2 and O that had good predictive power were constructed with descriptors selected for their high correlation. Increased electronegativity and hydrophilicity of the flavonoids structures were identified as two properties that increased binding affinity to RNA riboswitches. Hydroxyl groups at the C-3' and C-4' positions of the flavonoid molecule were strictly required for ligand-activation with riboswitches M1 and M2. Riboswitches O and L preferred multi-hydroxylated flavones as ligands. Substitutions on the A ring of the flavonoid molecule were not important in the molecular recognition process. O-glycosylated derivatives were not recognized by any of the riboswitches, presumably due to steric hindrances. Despite the challenges of detecting RNA conformational change after ligand binding, the resulting models elucidate important physicochemical features in the ligands for conformational structural studies of artificial aptamer complexes and for design of ligands having higher binding specificity.

16.
J Fungi (Basel) ; 8(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012875

RESUMO

Cordyceps militaris is an industrially important fungus, which is often used in Asia as traditional medicine. There has been a published genome-scale metabolic model (GSMM) of C. militaris useful for predicting its growth behaviors; however, lipid metabolism, which plays a vital role in cellular functions, remains incomplete in the GSMM of C. militaris. A comprehensive study on C. militaris was thus performed by enhancing GSMM through integrative analysis of metabolic footprint and transcriptome data. Through the enhanced GSMM of C. militaris (called iPC1469), it contained 1469 genes, 1904 metabolic reactions and 1229 metabolites. After model evaluation, in silico growth simulation results agreed well with the experimental data of the fungal growths on different carbon sources. Beyond the model-driven integrative data analysis, interestingly, we found key metabolic responses in alteration of lipid metabolism in C. militaris upon different carbon sources. The sphingoid bases (e.g., sphinganine, sphingosine, and phytosphingosine) and ceramide were statistically significant accumulated in the xylose culture when compared with other cultures; this study suggests that the sphingolipid biosynthetic capability in C. militaris was dependent on the carbon source assimilated for cell growth; this finding provides a comprehensive basis for the sphingolipid biosynthesis in C. militaris that can help to further redesign its metabolic control for medicinal and functional food applications.

17.
Gene ; 846: 146850, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36044942

RESUMO

Aurantiochytrium sp., a fungoid marine protist that belongs to Stramenophila has proven its potential in the production of polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acids (DHA). In this study, genomic characterisation of a potential producer for commercial production of DHA, Aurantiochytrium sp. SW1 has been carried out via whole genome sequencing analysis. The genome size of this strain is 60.89 Mb, with a total of 11,588 protein-coding genes. Among these, 9,127 genes could be functionally annotated into a total of 7,248 (62.5 %) from UniProt, 6,554 (56.6 %) from KEGG and 8,643 (74.6 %) genes from eggNOG protein database. The highest proportion of genes belongs to the protein family of metabolism were further assigned into 11 metabolic categories. The highest number of genes belonging to lipid metabolism (321 genes) followed by carbohydrate metabolism (290 genes), metabolism of cofactors and vitamins (197 genes) and amino acid metabolism (188 genes). Further analysis into the biosynthetic pathway for DHA showed evidence of all genes involved in PKS (polyketide synthase)-like PUFA synthase pathway and incomplete fatty acid synthase-elongase/desaturase pathway. Analysis of PUFA synthase showed the presence of up to ten tandem acyl carrier protein (ACP) domains which might have contributed to high DHA production in this organism. In addition, a hybrid system incorporating elements of FAS, Type I PKS and Type II PKS systems were found to be involved in the biosynthetic pathways of fatty acids in Aurantiochytrium sp. SW1. This study delivers an important reference for future research to enhance the lipid, especially DHA production in Aurantiochytrium sp, SW1 and establishment of this strain as an oleaginous thraustochytrid model.


Assuntos
Ácidos Docosa-Hexaenoicos , Estramenópilas , Proteína de Transporte de Acila/metabolismo , Aminoácidos/metabolismo , Vias Biossintéticas/genética , Ácidos Docosa-Hexaenoicos/genética , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos , Ácido Graxo Sintases/genética , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Policetídeo Sintases/genética , Estramenópilas/genética , Vitaminas
18.
Gene ; 840: 146747, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35863716

RESUMO

Limosilactobacillus fermentum KUB-D18 is a heterofermentative lactic acid bacterium that its potential probiotic relevance originally isolated from the chicken intestine. This study sequenced a whole-genome of L. fermentum KUB-D18 and annotated its genes and functions in relation to probiotic properties. As a result, the genome sequence of L. fermentum KUB-D18 approximately contained 2.02 Mbps with GC content of51.7%. After annotating the genome by integrated protein and pathway databases, 2,158 protein-encoding genes were majorly annotated for metabolisms of amino acids, carbohydrates and cofactors as well as vitamins which showed a versatile metabolic capability to gastrointestinal microhabitats. According to the comparative genome analysis of L. fermentum KUB-D18 and the other related strains, L. fermentum KUB-D18 showed common characteristics e.g., folate biosynthesis and bile salt hydrolase enzymes-related cholesterol lowering effect as well as a unique gene cluster involved in metabolism of l-ascorbic acid of L. fermentum KUB-D18. Taken together, L. fermentum KUB-D18 genome provides the genetic basis towards cellular capability for further elucidating the functional mechanisms of its probiotic properties. This study serves for designing desirable targets for the development of probiotic foods and feeds.


Assuntos
Limosilactobacillus fermentum , Probióticos , Colesterol/metabolismo , Genômica , Limosilactobacillus fermentum/genética , Limosilactobacillus fermentum/metabolismo , Probióticos/metabolismo
19.
Vet Sci ; 9(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35202347

RESUMO

Equine melanocytic neoplasm (EMN) is a common disease in older grey horses. The purpose of this study was to examine the potential proteins throughout EMN stages from faecal proteomic outlining using functional analysis. Faecal samples were collected from the rectum of 25 grey horses divided into three groups; normal group without EMN (n = 10), mild EMN (n = 6) and severe EMN (n = 9). Based on the results, 5910 annotated proteins out of 8509 total proteins were assessed from proteomic profiling. We observed differentially expressed proteins (DEPs) between the normal group and the EMN group, and 109 significant proteins were obtained, of which 28 and 81 were involved in metabolic and non-metabolic functions, respectively. We found 10 proteins that play a key role in lipid metabolism, affecting the tumour microenvironment and, consequently, melanoma progression. Interestingly, FOSL1 (FOS like 1, AP-1 transcription factor subunit) was considered as a potential highly expressed protein in a mild EMN group involved in melanocytes cell and related melanoma. Diacylglycerol kinase (DGKB), TGc domain-containing protein (Tgm2), structural maintenance of chromosomes 4 (SMC4) and mastermind-like transcriptional coactivator 2 (MAML2) were related to lipid metabolism, facilitating melanoma development in the severe-EMN group. In conclusion, these potential proteins can be used as candidate biomarkers for the monitoring of early EMN, the development of EMN, further prevention and treatment.

20.
Biology (Basel) ; 11(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35205160

RESUMO

Limosilactobacillus reuteri KUB-AC5 displays the hallmark features of probiotic properties for food and feed industries. Optimization of cultivation condition for the industrial production is important to reach cell concentration and cost reduction. Considering the strain-specific growth physiology, metabolic capability, and essential nutrients of L. reuteri KUB-AC5, the genome-scale metabolic model (GSMM) of L. reuteri KUB-AC5 was developed. Hereby, the GSMM of iTN656 was successfully constructed which contained 656 genes, 831 metabolites, and 953 metabolic reactions. The iTN656 model could show a metabolic capability under various carbon sources and guide potentially 14 essential single nutrients (e.g., vitamin B complex and amino acids) and 2 essential double nutrients (pairwise glutamine-glutamate and asparagine-aspartate) for L. reuteri KUB-AC5 growth through single and double omission analysis. Promisingly, the iTN656 model was further integrated with transcriptome data suggesting that putative metabolic routes as preferable paths e.g., sucrose uptake, nucleotide biosynthesis, urea cycle, and glutamine transporter for L. reuteri KUB-AC5 growth. The developed GSMM offers a powerful tool for multi-level omics analysis, enabling probiotic strain optimization for biomass overproduction on an industrial scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA