Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 148-158, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411552

RESUMO

The validation of structural models obtained by macromolecular X-ray crystallography against experimental diffraction data, whether before deposition into the PDB or after, is typically carried out exclusively against the merged data that are eventually archived along with the atomic coordinates. It is shown here that the availability of unmerged reflection data enables valuable additional analyses to be performed that yield improvements in the final models, and tools are presented to implement them, together with examples of the results to which they give access. The first example is the automatic identification and removal of image ranges affected by loss of crystal centering or by excessive decay of the diffraction pattern as a result of radiation damage. The second example is the `reflection-auditing' process, whereby individual merged data items showing especially poor agreement with model predictions during refinement are investigated thanks to the specific metadata (such as image number and detector position) that are available for the corresponding unmerged data, potentially revealing previously undiagnosed instrumental, experimental or processing problems. The third example is the calculation of so-called F(early) - F(late) maps from carefully selected subsets of unmerged amplitude data, which can not only highlight the location and extent of radiation damage but can also provide guidance towards suitable fine-grained parametrizations to model the localized effects of such damage.


Assuntos
Cristalografia por Raios X , Substâncias Macromoleculares/química
2.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1079-1089, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048148

RESUMO

Nowadays, progress in the determination of three-dimensional macromolecular structures from diffraction images is achieved partly at the cost of increasing data volumes. This is due to the deployment of modern high-speed, high-resolution detectors, the increased complexity and variety of crystallographic software, the use of extensive databases and high-performance computing. This limits what can be accomplished with personal, offline, computing equipment in terms of both productivity and maintainability. There is also an issue of long-term data maintenance and availability of structure-solution projects as the links between experimental observations and the final results deposited in the PDB. In this article, CCP4 Cloud, a new front-end of the CCP4 software suite, is presented which mitigates these effects by providing an online, cloud-based environment for crystallographic computation. CCP4 Cloud was developed for the efficient delivery of computing power, database services and seamless integration with web resources. It provides a rich graphical user interface that allows project sharing and long-term storage for structure-solution projects, and can be linked to data-producing facilities. The system is distributed with the CCP4 software suite version 7.1 and higher, and an online publicly available instance of CCP4 Cloud is provided by CCP4.


Assuntos
Computação em Nuvem , Software , Cristalografia por Raios X , Substâncias Macromoleculares/química
3.
J Mol Biol ; 434(11): 167599, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35460671

RESUMO

PDBx/mmCIF, Protein Data Bank Exchange (PDBx) macromolecular Crystallographic Information Framework (mmCIF), has become the data standard for structural biology. With its early roots in the domain of small-molecule crystallography, PDBx/mmCIF provides an extensible data representation that is used for deposition, archiving, remediation, and public dissemination of experimentally determined three-dimensional (3D) structures of biological macromolecules by the Worldwide Protein Data Bank (wwPDB, wwpdb.org). Extensions of PDBx/mmCIF are similarly used for computed structure models by ModelArchive (modelarchive.org), integrative/hybrid structures by PDB-Dev (pdb-dev.wwpdb.org), small angle scattering data by Small Angle Scattering Biological Data Bank SASBDB (sasbdb.org), and for models computed generated with the AlphaFold 2.0 deep learning software suite (alphafold.ebi.ac.uk). Community-driven development of PDBx/mmCIF spans three decades, involving contributions from researchers, software and methods developers in structural sciences, data repository providers, scientific publishers, and professional societies. Having a semantically rich and extensible data framework for representing a wide range of structural biology experimental and computational results, combined with expertly curated 3D biostructure data sets in public repositories, accelerates the pace of scientific discovery. Herein, we describe the architecture of the PDBx/mmCIF data standard, tools used to maintain representations of the data standard, governance, and processes by which data content standards are extended, plus community tools/software libraries available for processing and checking the integrity of PDBx/mmCIF data. Use cases exemplify how the members of the Worldwide Protein Data Bank have used PDBx/mmCIF as the foundation for its pipeline for delivering Findable, Accessible, Interoperable, and Reusable (FAIR) data to many millions of users worldwide.


Assuntos
Biologia Computacional , Cristalografia , Bases de Dados de Proteínas , Software , Substâncias Macromoleculares/química , Biologia Molecular , Conformação Proteica , Semântica
4.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 10): 364-373, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605441

RESUMO

The crystal structure determination of the armadillo repeat motif (ARM) domain of Drosophila SARM1 (dSARM1ARM) is described, which required the combination of a number of sources of phase information in order to obtain interpretable electron-density maps. SARM1 is a central executioner of programmed axon degeneration, a common feature of the early phase of many neurodegenerative diseases. SARM1 is held in the inactive state in healthy axons by its N-terminal auto-inhibitory ARM domain, and is activated to cleave NAD upon injury, triggering subsequent axon degeneration. To characterize the molecular mechanism of SARM1 activation, it was sought to determine the crystal structure of the SARM1 ARM domain. Here, the recombinant production and crystallization of dSARM1ARM is described, as well as the unconventional process used for structure determination. Crystals were obtained in the presence of NMN, a precursor of NAD and a potential activator of SARM1, only after in situ proteolysis of the N-terminal 63 residues. After molecular-replacement attempts failed, the crystal structure of dSARM1ARM was determined at 1.65 Šresolution using the MIRAS phasing technique with autoSHARP, combining data from native, selenomethionine-labelled and bromide-soaked crystals. The structure will further the understanding of SARM1 regulation.


Assuntos
Proteínas do Domínio Armadillo/química , Cristalografia por Raios X/métodos , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Animais , Modelos Moleculares , Conformação Proteica
5.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 7): 192-201, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196609

RESUMO

The members of the human epidermal growth factor receptor (HER) family are among the most intensely studied oncological targets. HER3 (ErbB3), which had long been neglected, has emerged as a key oncogene, regulating the activity of other receptors and being involved in progression and tumor escape in multiple types of cancer. Designed ankyrin-repeat proteins (DARPins) serve as antibody mimetics that have proven to be useful in the clinic, in diagnostics and in research. DARPins have previously been selected against EGFR (HER1), HER2 and HER4. In particular, their combination into bivalent binders that separate or lock receptors in their inactive conformation has proved to be a promising strategy for the design of potent anticancer therapeutics. Here, the selection of DARPins targeting extracellular domain 4 of HER3 (HER3d4) is described. One of the selected DARPins, D5, in complex with HER3d4 crystallized in two closely related crystal forms that diffracted to 2.3 and 2.0 Šresolution, respectively. The DARPin D5 epitope comprises HER3d4 residues 568-577. These residues also contribute to interactions within the tethered (inactive) and extended (active) conformations of the extracellular domain of HER3.


Assuntos
Repetição de Anquirina/genética , Cristalografia por Raios X/métodos , Espaço Extracelular/genética , Receptor ErbB-3/química , Receptor ErbB-3/genética , Sequência de Aminoácidos , Espaço Extracelular/metabolismo , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptor ErbB-3/metabolismo
6.
IUCrJ ; 7(Pt 5): 784-792, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939270

RESUMO

Macromolecular crystallography (MX) is the dominant means of determining the three-dimensional structures of biological macromolecules. Over the last few decades, most MX data have been collected at synchrotron beamlines using a large number of different detectors produced by various manufacturers and taking advantage of various protocols and goniometries. These data came in their own formats: sometimes proprietary, sometimes open. The associated metadata rarely reached the degree of completeness required for data management according to Findability, Accessibility, Interoperability and Reusability (FAIR) principles. Efforts to reuse old data by other investigators or even by the original investigators some time later were often frustrated. In the culmination of an effort dating back more than two decades, a large portion of the research community concerned with high data-rate macromolecular crystallography (HDRMX) has now agreed to an updated specification of data and metadata for diffraction images produced at synchrotron light sources and X-ray free-electron lasers (XFELs). This 'Gold Standard' will facilitate the processing of data sets independent of the facility at which they were collected and enable data archiving according to FAIR principles, with a particular focus on interoperability and reusability. This agreed standard builds on the NeXus/HDF5 NXmx application definition and the International Union of Crystallo-graphy (IUCr) imgCIF/CBF dictionary, and it is compatible with major data-processing programs and pipelines. Just as with the IUCr CBF/imgCIF standard from which it arose and to which it is tied, the NeXus/HDF5 NXmx Gold Standard application definition is intended to be applicable to all detectors used for crystallography, and all hardware and software developers in the field are encouraged to adopt and contribute to the standard.

8.
Proc Natl Acad Sci U S A ; 115(2): E162-E171, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279395

RESUMO

Coronaviruses (CoVs) stand out among RNA viruses because of their unusually large genomes (∼30 kb) associated with low mutation rates. CoVs code for nsp14, a bifunctional enzyme carrying RNA cap guanine N7-methyltransferase (MTase) and 3'-5' exoribonuclease (ExoN) activities. ExoN excises nucleotide mismatches at the RNA 3'-end in vitro, and its inactivation in vivo jeopardizes viral genetic stability. Here, we demonstrate for severe acute respiratory syndrome (SARS)-CoV an RNA synthesis and proofreading pathway through association of nsp14 with the low-fidelity nsp12 viral RNA polymerase. Through this pathway, the antiviral compound ribavirin 5'-monophosphate is significantly incorporated but also readily excised from RNA, which may explain its limited efficacy in vivo. The crystal structure at 3.38 Šresolution of SARS-CoV nsp14 in complex with its cofactor nsp10 adds to the uniqueness of CoVs among RNA viruses: The MTase domain presents a new fold that differs sharply from the canonical Rossmann fold.


Assuntos
Coronavirus/metabolismo , RNA Viral/metabolismo , Ribavirina/metabolismo , Replicação Viral , Antivirais/metabolismo , Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Coronavirus/genética , Cristalografia por Raios X , Exorribonucleases/química , Exorribonucleases/genética , Exorribonucleases/metabolismo , Humanos , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , RNA Viral/genética , Ribavirina/farmacologia , Síndrome Respiratória Aguda Grave/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
9.
Nat Struct Mol Biol ; 24(7): 570-577, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28581512

RESUMO

Clinical studies indicate that partial agonists of the G-protein-coupled, free fatty acid receptor 1 GPR40 enhance glucose-dependent insulin secretion and represent a potential mechanism for the treatment of type 2 diabetes mellitus. Full allosteric agonists (AgoPAMs) of GPR40 bind to a site distinct from partial agonists and can provide additional efficacy. We report the 3.2-Å crystal structure of human GPR40 (hGPR40) in complex with both the partial agonist MK-8666 and an AgoPAM, which exposes a novel lipid-facing AgoPAM-binding pocket outside the transmembrane helical bundle. Comparison with an additional 2.2-Å structure of the hGPR40-MK-8666 binary complex reveals an induced-fit conformational coupling between the partial agonist and AgoPAM binding sites, involving rearrangements of the transmembrane helices 4 and 5 (TM4 and TM5) and transition of the intracellular loop 2 (ICL2) into a short helix. These conformational changes likely prime GPR40 to a more active-like state and explain the binding cooperativity between these ligands.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Regulação Alostérica , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
10.
J Mol Biol ; 428(12): 2557-2568, 2016 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-27016204

RESUMO

TEA domain (TEAD) transcription factors are essential for the normal development of eukaryotes and are the downstream effectors of the Hippo tumor suppressor pathway. Whereas our earlier work established the three-dimensional structure of the highly conserved DNA-binding domain using solution NMR spectroscopy, the structural basis for regulating the DNA-binding activity remains unknown. Here, we present the X-ray crystallographic structure and activity of a TEAD mutant containing a truncated L1 loop, ΔL1 TEAD DBD. Unexpectedly, the three-dimensional structure of the ΔL1 TEAD DBD reveals a helix-swapped homodimer wherein helix 1 is swapped between monomers. Furthermore, each three-helix bundle in the domain-swapped dimer is a structural homolog of MYB-like domains. Our investigations of the DNA-binding activity reveal that although the formation of the three-helix bundle by the ΔL1 TEAD DBD is sufficient for binding to an isolated M-CAT-like DNA element, multimeric forms are deficient for cooperative binding to tandemly duplicated elements, indicating that the L1 loop contributes to the DNA-binding activity of TEAD. These results suggest that switching between monomeric and domain-swapped forms may regulate DNA selectivity of TEAD proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Dimerização , Escherichia coli/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína
11.
Methods Mol Biol ; 1320: 175-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26227043

RESUMO

Experimental phasing by single- or multi-wavelength anomalous dispersion (SAD or MAD) has become the most popular method of de novo macromolecular structure determination. Continuous advances at third-generation synchrotron sources have enabled the deployment of rapid data collection protocols that are capable of recording SAD or MAD data sets. However, procedural simplifications driven by the pursuit of high throughput have led to a loss of sophistication in data collection strategies, adversely affecting measurement accuracy from the viewpoint of anomalous phasing. In this chapter, we detail optimized strategies for collecting high-quality data for experimental phasing, with particular emphasis on minimizing errors from radiation damage as well as from the instrument. This chapter also emphasizes data processing for "on-the-fly" decision-making during data collection, a critical process when data quality depends directly on information gathered while at the synchrotron.


Assuntos
Cristalografia por Raios X/métodos , Substâncias Macromoleculares , Algoritmos , Gráficos por Computador , Cristalização , Cristalografia por Raios X/instrumentação , Coleta de Dados , Tomada de Decisões , Desenho de Equipamento , Reprodutibilidade dos Testes , Espalhamento de Radiação , Software , Espectrometria de Fluorescência , Síncrotrons , Raios X
12.
Nature ; 527(7576): 114-7, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26503046

RESUMO

Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 Å, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.


Assuntos
Gammainfluenzavirus/enzimologia , RNA Polimerase Dependente de RNA/química , Apoenzimas/química , Apoenzimas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Endonucleases/química , Endonucleases/metabolismo , Ativação Enzimática , Modelos Moleculares , Iniciação Traducional da Cadeia Peptídica , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Capuzes de RNA/metabolismo , RNA Viral/biossíntese , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleoproteínas/química
13.
J Virol ; 89(8): 4356-71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653438

RESUMO

UNLABELLED: Pestiviruses form a genus in the Flaviviridae family of small enveloped viruses with a positive-sense single-stranded RNA genome. Viral replication in this family requires the activity of a superfamily 2 RNA helicase contained in the C-terminal domain of nonstructural protein 3 (NS3). NS3 features two conserved RecA-like domains (D1 and D2) with ATPase activity, plus a third domain (D3) that is important for unwinding nucleic acid duplexes. We report here the X-ray structure of the pestivirus NS3 helicase domain (pNS3h) at a 2.5-Å resolution. The structure deviates significantly from that of NS3 of other genera in the Flaviviridae family in D3, as it contains two important insertions that result in a narrower nucleic acid binding groove. We also show that mutations in pNS3h that rescue viruses from which the core protein is deleted map to D3, suggesting that this domain may be involved in interactions that facilitate particle assembly. Finally, structural comparisons of the enzyme in different crystalline environments, together with the findings of small-angle X-ray-scattering studies in solution, show that D2 is mobile with respect to the rest of the enzyme, oscillating between closed and open conformations. Binding of a nonhydrolyzable ATP analog locks pNS3h in a conformation that is more compact than the closest apo-form in our crystals. Together, our results provide new insight and bring up new questions about pNS3h function during pestivirus replication. IMPORTANCE: Although pestivirus infections impose an important toll on the livestock industry worldwide, little information is available about the nonstructural proteins essential for viral replication, such as the NS3 helicase. We provide here a comparative structural and functional analysis of pNS3h with respect to its orthologs in other viruses of the same family, the flaviviruses and hepatitis C virus. Our studies reveal differences in the nucleic acid binding groove that could have implications for understanding the unwinding specificity of pNS3h, which is active only on RNA duplexes. We also show that pNS3h has a highly dynamic behavior--a characteristic probably shared with NS3 helicases from all Flaviviridae members--that could be targeted for drug design by using recent algorithms to specifically block molecular motion. Compounds that lock the enzyme in a single conformation or limit its dynamic range of conformations are indeed likely to block its helicase function.


Assuntos
Modelos Moleculares , Pestivirus/enzimologia , Proteínas não Estruturais Virais/química , Clonagem Molecular , Cristalografia por Raios X , Oligonucleotídeos/genética , Conformação Proteica , RNA Helicases/química , Espalhamento a Baixo Ângulo , Serina Endopeptidases/química , Especificidade da Espécie
14.
Protein Sci ; 22(10): 1425-31, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23904352

RESUMO

The obligate intracellular, gram-negative bacterium Rickettsia is the causative agent of spotted fevers and typhus in humans. Surface cell antigen (sca) proteins surround these bacteria. We recently reported the co-localization of one of these proteins, sca4, with vinculin in cells at sites of focal adhesions and demonstrated that two vinculin binding sites directed the sca4/vinculin interaction. Here we report the 2.2 Å crystal structure of the conserved N-terminal 38 kDa domain of sca4 from Rickettsia rickettsii. The structure reveals two subdomains. The first is an all-helical domain that is folded in a fashion similar to the dimeric assembly chaperone for rubisco, namely RbcX. The following and highly conserved ß-strand domain lacks significant structural similarity with other known structures and to the best of our knowledge represents a new protein fold.


Assuntos
Antígenos de Superfície/química , Proteínas de Bactérias/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Rickettsia rickettsii/química , Antígenos de Superfície/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Adesões Focais/metabolismo , Humanos , Modelos Moleculares , Dobramento de Proteína , Vinculina/metabolismo
15.
Cell ; 152(1-2): 132-43, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332751

RESUMO

The sequence-specific transcription factor NF-Y binds the CCAAT box, one of the sequence elements most frequently found in eukaryotic promoters. NF-Y is composed of the NF-YA and NF-YB/NF-YC subunits, the latter two hosting histone-fold domains (HFDs). The crystal structure of NF-Y bound to a 25 bp CCAAT oligonucleotide shows that the HFD dimer binds to the DNA sugar-phosphate backbone, mimicking the nucleosome H2A/H2B-DNA assembly. NF-YA both binds to NF-YB/NF-YC and inserts an α helix deeply into the DNA minor groove, providing sequence-specific contacts to the CCAAT box. Structural considerations and mutational data indicate that NF-YB ubiquitination at Lys138 precedes and is equivalent to H2B Lys120 monoubiquitination, important in transcriptional activation. Thus, NF-Y is a sequence-specific transcription factor with nucleosome-like properties of nonspecific DNA binding and helps establish permissive chromatin modifications at CCAAT promoters. Our findings suggest that other HFD-containing proteins may function in similar ways.


Assuntos
Fator de Ligação a CCAAT/química , Sequência de Aminoácidos , Animais , Fator de Ligação a CCAAT/metabolismo , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , Proteínas de Choque Térmico HSP72/genética , Histonas/química , Humanos , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ubiquitinação
16.
J Bacteriol ; 194(18): 4837-46, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22753070

RESUMO

The nucleotide messenger cyclic di-GMP (c-di-GMP) plays a central role in the regulation of motility, virulence, and biofilm formation in many pathogenic bacteria. EAL domain-containing phosphodiesterases are the major signaling proteins responsible for the degradation of c-di-GMP and maintenance of its cellular level. We determined the crystal structure of a single mutant (R286W) of the response regulator RocR from Pseudomonas aeruginosa to show that RocR exhibits a highly unusual tetrameric structure arranged around a single dyad, with the four subunits adopting two distinctly different conformations. Subunits A and B adopt a conformation with the REC domain located above the c-di-GMP binding pocket, whereas subunits C and D adopt an open conformation with the REC domain swung to the side of the EAL domain. Remarkably, the access to the substrate-binding pockets of the EAL domains of the open subunits C and D are blocked in trans by the REC domains of subunits A and B, indicating that only two of the four active sites are engaged in the degradation of c-di-GMP. In conjunction with biochemical and biophysical data, we propose that the structural changes within the REC domains triggered by the phosphorylation are transmitted to the EAL domain active sites through a pathway that traverses the dimerization interfaces composed of a conserved regulatory loop and the neighboring motifs. This exquisite mechanism reinforces the crucial role of the regulatory loop and suggests that similar regulatory mechanisms may be operational in many EAL domain proteins, considering the preservation of the dimerization interface and the spatial arrangement of the regulatory domains.


Assuntos
GMP Cíclico/análogos & derivados , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Cristalografia por Raios X , GMP Cíclico/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Multimerização Proteica , Estrutura Quaternária de Proteína
17.
J Mol Biol ; 422(5): 697-704, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22709580

RESUMO

Vinculin is a key regulator of the actin cytoskeleton attachment to the cell membrane at cellular adhesion sites, which is crucial for processes such as cell motility and migration, development, survival, and wound healing. Vinculin loss results in embryonic lethality, cardiovascular diseases, and cancer. Its tail domain, Vt, is crucial for vinculin activation and focal adhesion turnover and binds to the actin cytoskeleton and acidic phospholipids upon which it unfurls. The RNA binding protein raver1 regulates the assembly of focal adhesions transcriptionally by binding to vinculin. The muscle-specific splice form, metavinculin, is characterized by a 68-residue insert in the tail domain (MVt) and correlates with hereditary idiopathic dilated cardiomyopathy. Here, we report that metavinculin can bind to raver1 in its inactive state. Our crystal structure explains this permissivity, where an extended coil unique to MVt is unfurled in the MVtΔ954:raver1 complex structure. Our binding assays show that raver1 forms a ternary complex with MVt and vinculin mRNA. These findings suggest that the metavinculin:raver1:RNA complex is constitutively recruited to adhesion complexes.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , RNA/química , RNA/metabolismo , Vinculina/química , Vinculina/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Ribonucleoproteínas
18.
Structure ; 20(5): 862-73, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22579253

RESUMO

Pestiviruses, which belong to the Flaviviridae family of RNA viruses, are important agents of veterinary diseases causing substantial economical losses in animal farming worldwide. Pestivirus particles display three envelope glycoproteins at their surface: E(rns), E1, and E2. We report here the crystal structure of the catalytic domain of E(rns), the ribonucleolytic activity of which is believed to counteract the innate immunity of the host. The structure reveals a three-dimensional fold corresponding to T2 ribonucleases from plants and fungi. Cocrystallization experiments with mono- and oligonucleotides revealed the structural basis for substrate recognition at two binding sites previously identified for T2 RNases. A detailed analysis of poly-U cleavage products using (31)P-NMR and size exclusion chromatography, together with molecular docking studies, provides a comprehensive mechanistic picture of E(rns) activity on its substrates and reveals the presence of at least one additional nucleotide binding site.


Assuntos
Glicoproteínas/química , Pestivirus/metabolismo , Ribonucleases/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Glicoproteínas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Ribonucleases/química
19.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 4): 368-80, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22505257

RESUMO

Maximum-likelihood X-ray macromolecular structure refinement in BUSTER has been extended with restraints facilitating the exploitation of structural similarity. The similarity can be between two or more chains within the structure being refined, thus favouring NCS, or to a distinct 'target' structure that remains fixed during refinement. The local structural similarity restraints (LSSR) approach considers all distances less than 5.5 Šbetween pairs of atoms in the chain to be restrained. For each, the difference from the distance between the corresponding atoms in the related chain is found. LSSR applies a restraint penalty on each difference. A functional form that reaches a plateau for large differences is used to avoid the restraints distorting parts of the structure that are not similar. Because LSSR are local, there is no need to separate out domains. Some restraint pruning is still necessary, but this has been automated. LSSR have been available to academic users of BUSTER since 2009 with the easy-to-use -autoncs and -target target.pdb options. The use of LSSR is illustrated in the re-refinement of PDB entries 5rnt, where -target enables the correct ligand-binding structure to be found, and 1osg, where -autoncs contributes to the location of an additional copy of the cyclic peptide ligand.


Assuntos
Automação Laboratorial/métodos , Cristalografia por Raios X/métodos , Hemoglobinas/análise , Hemoglobinas/química , Ligantes , Modelos Moleculares , Conformação Molecular , Peptídeos Cíclicos/análise , Peptídeos Cíclicos/química
20.
Protein Sci ; 21(4): 583-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22334306

RESUMO

The cytoskeletal protein talin activates integrin receptors by binding of its FERM domain to the cytoplasmic tail of ß-integrin. Talin also couples integrins to the actin cytoskeleton, largely by binding to and activating the cytoskeletal protein vinculin, which binds to F-actin through the agency of its five-helix bundle tail (Vt) domain. Talin activates vinculin by means of buried amphipathic α-helices coined vinculin binding sites (VBSs) that reside within numerous four- and five-helix bundle domains that comprise the central talin rod, which are released from their buried locales by means of mechanical tension on the integrin:talin complex. In turn, these VBSs bind to the N-terminal seven-helix bundle (Vh1) domain of vinculin, creating an entirely new helix bundle that severs its head-tail interactions. Interestingly, talin harbors a second integrin binding site coined IBS2 that consists of two five-helix bundle domains that also contain a VBS (VBS50). Here we report the crystal structure of VBS50 in complex with vinculin at 2.3 Å resolution and show that intramolecular interactions of VBS50 within IBS2 are much more extensive versus its interactions with vinculin. Indeed, the IBS2-vinculin interaction only occurs at physiological temperature and the affinity of VBS50 for vinculin is about 30 times less than other VBSs. The data support a model where integrin binding destabilizes IBS2 to allow it to bind to vinculin.


Assuntos
Actinas/química , Integrinas/química , Complexos Multiproteicos/química , Talina/química , Vinculina/química , Sítios de Ligação , Calorimetria , Adesões Focais/química , Humanos , Modelos Moleculares , Ligação Proteica , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA