Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1857(4): 473-82, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26721205

RESUMO

For Vibrio cholerae, the coordinated import and export of Na(+) is crucial for adaptation to habitats with different osmolarities. We investigated the Na(+)-extruding branch of the sodium cycle in this human pathogen by in vivo (23)Na-NMR spectroscopy. The Na(+) extrusion activity of cells was monitored after adding glucose which stimulated respiration via the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR). In a V. cholerae deletion mutant devoid of the Na(+)-NQR encoding genes (nqrA-F), rates of respiratory Na(+) extrusion were decreased by a factor of four, but the cytoplasmic Na(+) concentration was essentially unchanged. Furthermore, the mutant was impaired in formation of transmembrane voltage (ΔΨ, inside negative) and did not grow under hypoosmotic conditions at pH8.2 or above. This growth defect could be complemented by transformation with the plasmid encoded nqr operon. In an alkaline environment, Na(+)/H(+) antiporters acidify the cytoplasm at the expense of the transmembrane voltage. It is proposed that, at alkaline pH and limiting Na(+) concentrations, the Na(+)-NQR is crucial for generation of a transmembrane voltage to drive the import of H(+) by electrogenic Na(+)/H(+) antiporters. Our study provides the basis to understand the role of the Na(+)-NQR in pathogenicity of V. cholerae and other pathogens relying on this primary Na(+) pump for respiration.


Assuntos
Quinona Redutases/fisiologia , Sódio/metabolismo , Vibrio cholerae/metabolismo , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Potenciais da Membrana
2.
Biol Chem ; 396(9-10): 1015-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26146127

RESUMO

The Na⁺-translocating NADH:ubiquinone oxidoreductase (Na⁺-NQR) of Vibrio cholerae is a respiratory complex that couples the exergonic oxidation of NADH to the transport of Na⁺ across the cytoplasmic membrane. It is composed of six different subunits, NqrA, NqrB, NqrC, NqrD, NqrE, and NqrF, which harbor FAD, FMN, riboflavin, quinone, and two FeS centers as redox co-factors. We recently determined the X-ray structure of the entire Na⁺-NQR complex at 3.5-Šresolution and complemented the analysis by high-resolution structures of NqrA, NqrC, and NqrF. The position of flavin and FeS co-factors both at the cytoplasmic and the periplasmic side revealed an electron transfer pathway from cytoplasmic subunit NqrF across the membrane to the periplasmic NqrC, and via NqrB back to the quinone reduction site on cytoplasmic NqrA. A so far unknown Fe site located in the midst of membrane-embedded subunits NqrD and NqrE shuttles the electrons over the membrane. Some distances observed between redox centers appear to be too large for effective electron transfer and require conformational changes that are most likely involved in Na⁺ transport. Based on the structure, we propose a mechanism where redox induced conformational changes critically couple electron transfer to Na⁺ translocation from the cytoplasm to the periplasm through a channel in subunit NqrB.


Assuntos
Quinona Redutases/química , Quinona Redutases/metabolismo , Sódio/metabolismo , Vibrio cholerae/enzimologia , Transporte Biológico , Transporte de Elétrons , Conformação Proteica
3.
PLoS One ; 10(4): e0123518, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874792

RESUMO

Vibrio cholerae is motile by means of its single polar flagellum which is driven by the sodium-motive force. In the motor driving rotation of the flagellar filament, a stator complex consisting of subunits PomA and PomB converts the electrochemical sodium ion gradient into torque. Charged or polar residues within the membrane part of PomB could act as ligands for Na+, or stabilize a hydrogen bond network by interacting with water within the putative channel between PomA and PomB. By analyzing a large data set of individual tracks of swimming cells, we show that S26 located within the transmembrane helix of PomB is required to promote very fast swimming of V. cholerae. Loss of hypermotility was observed with the S26T variant of PomB at pH 7.0, but fast swimming was restored by decreasing the H+ concentration of the external medium. Our study identifies S26 as a second important residue besides D23 in the PomB channel. It is proposed that S26, together with D23 located in close proximity, is important to perturb the hydration shell of Na+ before its passage through a constriction within the stator channel.


Assuntos
Proteínas de Bactérias/química , Flagelos/metabolismo , Subunidades Proteicas/química , Serina/metabolismo , Canais de Sódio/química , Vibrio cholerae/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelos/química , Flagelos/genética , Expressão Gênica , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Transporte de Íons , Movimento , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Serina/genética , Sódio/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo , Vibrio cholerae/química , Vibrio cholerae/genética , Água/metabolismo
4.
Nature ; 516(7529): 62-7, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25471880

RESUMO

NADH oxidation in the respiratory chain is coupled to ion translocation across the membrane to build up an electrochemical gradient. The sodium-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a membrane protein complex widespread among pathogenic bacteria, consists of six subunits, NqrA, B, C, D, E and F. To our knowledge, no structural information on the Na(+)-NQR complex has been available until now. Here we present the crystal structure of the Na(+)-NQR complex at 3.5 Å resolution. The arrangement of cofactors both at the cytoplasmic and the periplasmic side of the complex, together with a hitherto unknown iron centre in the midst of the membrane-embedded part, reveals an electron transfer pathway from the NADH-oxidizing cytoplasmic NqrF subunit across the membrane to the periplasmic NqrC, and back to the quinone reduction site on NqrA located in the cytoplasm. A sodium channel was localized in subunit NqrB, which represents the largest membrane subunit of the Na(+)-NQR and is structurally related to urea and ammonia transporters. On the basis of the structure we propose a mechanism of redox-driven Na(+) translocation where the change in redox state of the flavin mononucleotide cofactor in NqrB triggers the transport of Na(+) through the observed channel.


Assuntos
Proteínas de Bactérias/química , Modelos Moleculares , NAD(P)H Desidrogenase (Quinona)/química , Sódio/química , Vibrio cholerae/enzimologia , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Flavoproteínas/química , Ferro/química , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Canais de Sódio/química
5.
Biol Chem ; 395(12): 1389-99, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205724

RESUMO

Vibrio cholerae is a Gram-negative bacterium that lives in brackish or sea water environments. Strains of V. cholerae carrying the pathogenicity islands infect the human gut and cause the fatal disease cholera. Vibrio cholerae maintains a Na(+) gradient at its cytoplasmic membrane that drives substrate uptake, motility, and efflux of antibiotics. Here, we summarize the major Na(+)-dependent transport processes and describe the central role of the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a primary Na(+) pump, in maintaining a Na(+)-motive force. The Na(+)-NQR is a membrane protein complex with a mass of about 220 kDa that couples the exergonic oxidation of NADH to the transport of Na(+) across the cytoplasmic membrane. We describe the molecular architecture of this respiratory complex and summarize the findings how electron transport might be coupled to Na(+)-translocation. Moreover, recent advances in the determination of the three-dimensional structure of this complex are reported.


Assuntos
Cólera/microbiologia , Quinona Redutases/metabolismo , Sódio/metabolismo , Vibrio cholerae/enzimologia , Transporte Biológico Ativo , Cólera/enzimologia , Cristalografia por Raios X , Transporte de Elétrons , Metabolismo Energético , Humanos , Modelos Moleculares , Conformação Proteica , Quinona Redutases/química , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade
6.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 7): 987-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25005105

RESUMO

The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio cholerae is a membrane protein complex consisting of six different subunits NqrA-NqrF. The major domains of the NqrA and NqrC subunits were heterologously expressed in Escherichia coli and crystallized. The structure of NqrA1-377 was solved in space groups C2221 and P21 by SAD phasing and molecular replacement at 1.9 and 2.1 Šresolution, respectively. NqrC devoid of the transmembrane helix was co-expressed with ApbE to insert the flavin mononucleotide group covalently attached to Thr225. The structure was determined by molecular replacement using apo-NqrC of Parabacteroides distasonis as search model at 1.8 Šresolution.


Assuntos
Proteínas de Bactérias/química , Mononucleotídeo de Flavina/química , Proteínas de Membrana/química , Subunidades Proteicas/química , Quinona Redutases/química , Vibrio cholerae/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Quinona Redutases/genética , Quinona Redutases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Vibrio cholerae/enzimologia
7.
J Bacteriol ; 195(21): 4888-99, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23974033

RESUMO

Vibrio cholerae is motile by its polar flagellum, which is driven by a Na(+)-conducting motor. The stators of the motor, composed of four PomA and two PomB subunits, provide access for Na(+) to the torque-generating unit of the motor. To characterize the Na(+) pathway formed by the PomAB complex, we studied the influence of chloride salts (chaotropic, Na(+), and K(+)) and pH on the motility of V. cholerae. Motility decreased at elevated pH but increased if a chaotropic chloride salt was added, which rules out a direct Na(+) and H(+) competition in the process of binding to the conserved PomB D23 residue. Cells expressing the PomB S26A/T or D42N variants lost motility at low Na(+) concentrations but regained motility in the presence of 170 mM chloride. Both PomA and PomB were modified by N,N'-dicyclohexylcarbodiimide (DCCD), indicating the presence of protonated carboxyl groups in the hydrophobic regions of the two proteins. Na(+) did not protect PomA and PomB from this modification. Our study shows that both osmolality and pH have an influence on the function of the flagellum from V. cholerae. We propose that D23, S26, and D42 of PomB are part of an ion-conducting pathway formed by the PomAB stator complex.


Assuntos
Flagelos/fisiologia , Sódio/farmacologia , Vibrio cholerae/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dicicloexilcarbodi-Imida/farmacologia , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Concentração de Íons de Hidrogênio , Movimento , Mutação , Concentração Osmolar , Estrutura Terciária de Proteína , Sódio/administração & dosagem , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
Arch Microbiol ; 195(3): 211-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23208205

RESUMO

Neisseria meningitidis is a pathogenic bacterium responsible for meningitis. The mechanisms underlying the control of Na(+) transmembrane movement, presumably important to pathogenicity, have been barely addressed. To elucidate the function of the components of the Na(+) transport system in N. meningitidis, an open reading frame from the genome of this bacterium displaying similarity with the NhaE type of Na(+)/H(+) antiporters was expressed in Escherichia coli and characterized for sodium transport ability. The N. meningitidis antiporter (NmNhaE) was able to complement an E. coli strain devoid of Na(+)/H(+) antiporters (KNabc) respecting the ability to grow in the presence of NaCl and LiCl. Ion transport assays in everted vesicles prepared from KNabc expressing NmNhaE from a plasmid confirmed its ability to translocate Na(+) and Li(+). Here is presented the characterization of the first NhaE from a pathogen, an important contribution to the comprehension of sodium ion metabolism in this kind of microorganisms.


Assuntos
Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Sequência de Aminoácidos , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cloreto de Lítio/metabolismo , Plasmídeos/genética , Cloreto de Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo
9.
Biochim Biophys Acta ; 1787(10): 1198-204, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19501041

RESUMO

The flagellar motor consists of a rotor and a stator and couples the flux of cations (H(+) or Na(+)) to the generation of the torque necessary to drive flagellum rotation. The inner membrane proteins PomA and PomB are stator components of the Na(+)-driven flagellar motor from Vibrio cholerae. Affinity-tagged variants of PomA and PomB were co-expressed in trans in the non-motile V. cholerae pomAB deletion strain to study the role of the conserved D23 in the transmembrane helix of PomB. At pH 9, the D23E variant restored motility to 100% of that observed with wild type PomB, whereas the D23N variant resulted in a non-motile phenotype, indicating that a carboxylic group at position 23 in PomB is important for flagellum rotation. Motility tests at decreasing pH revealed a pronounced decline of flagellar function with a motor complex containing the PomB-D23E variant. It is suggested that the protonation state of the glutamate residue at position 23 determines the performance of the flagellar motor by altering the affinity of Na(+) to PomB. The conserved aspartate residue in the transmembrane helix of PomB and its H(+)-dependent homologs might act as a ligand for the coupling cation in the flagellar motor.


Assuntos
Ácido Aspártico/metabolismo , Proteínas de Bactérias/metabolismo , Sequência Conservada , Flagelos/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Vibrio cholerae/metabolismo , Deleção de Genes , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Movimento , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Vibrio cholerae/citologia
10.
FEBS J ; 275(9): 2137-50, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18384384

RESUMO

The rotational mechanism of ATP synthases requires a unique interface between the stator a subunit and the rotating c-ring to accommodate stability and smooth rotation simultaneously. The recently published c-ring crystal structure of the ATP synthase of Ilyobacter tartaricus represents the conformation in the absence of subunit a. However, in order to understand the dynamic structural processes during ion translocation, studies in the presence of subunit a are required. Here, by intersubunit Cys-Cys cross-linking, the relative topography of the interacting helical faces of subunits a and c from the I. tartaricus ATP synthase has been mapped. According to these data, the essential stator arginine (aR226) is located between the c-ring binding pocket and the cytoplasm. Furthermore, the spatially vicinal residues cT67C and cG68C in the isolated c-ring structure yielded largely asymmetric cross-linking products with aN230C of subunit a, suggesting a small, but significant conformational change of binding-site residues upon contact with subunit a. The conformational change was dependent on the positive charge of the stator arginine or the aR226H substitution. Energy-minimization calculations revealed possible modes for the interaction between the stator arginine and the c-ring. These biochemical results and structural restraints support a model in which the stator arginine operates as a pendulum, moving in and out of the binding pocket as the c-ring rotates along the interface with subunit a. This mechanism allows efficient interaction between subunit a and the c-ring and simultaneously allows almost frictionless movement against each other.


Assuntos
Arginina/química , ATPases Bacterianas Próton-Translocadoras/fisiologia , Substituição de Aminoácidos , ATPases Bacterianas Próton-Translocadoras/análise , ATPases Bacterianas Próton-Translocadoras/genética , ATPases Bacterianas Próton-Translocadoras/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Cobre/química , Reagentes de Ligações Cruzadas/farmacologia , Cisteína/química , Cisteína/metabolismo , Escherichia coli/genética , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Modelos Moleculares , Conformação Molecular , Óperon , Oxirredução , Plasmídeos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Prótons , Proteínas Recombinantes/metabolismo
11.
Eur J Biochem ; 269(12): 2997-3004, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12071964

RESUMO

The membrane-bound beta subunit of the oxaloacetate decarboxylase Na+ pump of Klebsiella pneumoniae catalyzes the decarboxylation of enzyme-bound biotin. This event is coupled to the transport of 2 Na+ ions into the periplasm and consumes a periplasmically derived proton. The connecting fragment IIIa and transmembrane helices IV and VIII of the beta subunit are highly conserved, harboring residues D203, Y229, N373, G377, S382, and R389 that play a profound role in catalysis. We report here detailed kinetic analyses of the wild-type enzyme and the beta subunit mutants N373D, N373L, S382A, S382D, S382T, R389A, and R389D. In these studies, pH profiles, Na+ binding affinities, Hill coefficients, Vmax values and inhibition by Na+ was determined. A prominent result is the complete lack of oxaloacetate decarboxylase activity of the S382A mutant at Na+ concentrations up to 20 mm and recovery of significant activities at elevated Na+ concentrations (KNa approximately 400 mm at pH 6.0), where the wild-type enzyme is almost completely inhibited. These results indicate impaired Na+ binding to the S382 including site in the S382A mutant. Oxaloacetate decarboxylation by the S382A mutant at high Na+ concentrations is uncoupled from the vectorial events of Na+ or H+ translocation across the membrane. Based on all data with the mutant enzymes we propose a coupling mechanism, which includes Na+ binding to center I contributed by D203 (region IIIa) and N373 (helix VIII) and center II contributed by Y229 (helix IV) and S382 (helix VIII). These centers are exposed to the cytoplasmic surface in the carboxybiotin-bound state of the beta subunit and become exposed to the periplasmic surface after decarboxylation of this compound. During the countertransport of 2 Na+ and 1 H+ Y229 of center II switches between the protonated and deprotonated Na+-bound state.


Assuntos
Carboxiliases/metabolismo , Klebsiella pneumoniae/enzimologia , Serina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Tirosina/metabolismo , Substituição de Aminoácidos , Carboxiliases/química , Carboxiliases/genética , Sequência Conservada , Metabolismo Energético/fisiologia , Cinética , Mutagênese Sítio-Dirigida , Mutação Puntual , Ligação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas , Prótons , Sódio/química , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA