Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 96(25): 257203, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16907338

RESUMO

Exchange interactions between S=1/2 sites in piperazinium hexachlorodicuprate produce a frustrated bilayer magnet with a singlet ground state. We have determined the field-temperature phase diagram by high field magnetization and neutron scattering experiments. There are two quantum critical points: Hc1=7.5 T separates a quantum paramagnet phase from a three dimensional, antiferromagnetically ordered state while Hc2=37 marks the onset of a fully polarized state. The ordered phase, which we describe as a magnon Bose-Einstein condensate (BEC), is embedded in a quantum critical regime with short range correlations. A low temperature anomaly in the BEC phase boundary indicates that additional low energy features of the material become important near Hc1.

2.
Nat Mater ; 4(9): 658-62, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16100515

RESUMO

Many physical properties of high-temperature superconductors are two-dimensional phenomena derived from their square-planar CuO2 building blocks. This is especially true of the magnetism from the copper ions. As mobile charge carriers enter the CuO2 layers, the antiferromagnetism of the parent insulators, where each copper spin is antiparallel to its nearest neighbours, evolves into a fluctuating state where the spins show tendencies towards magnetic order of a longer periodicity. For certain charge-carrier densities, quantum fluctuations are sufficiently suppressed to yield static long-period order, and external magnetic fields also induce such order. Here we show that, in contrast to the chemically controlled order in superconducting samples, the field-induced order in these same samples is actually three-dimensional, implying significant magnetic linkage between the CuO2 planes. The results are important because they show that there are three-dimensional magnetic couplings that survive into the superconducting state, and coexist with the crucial inter-layer couplings responsible for three-dimensional superconductivity. Both types of coupling will straighten the vortex lines, implying that we have finally established a direct link between technical superconductivity, which requires zero electrical resistance in an applied magnetic field and depends on vortex dynamics, and the underlying antiferromagnetism of the cuprates.


Assuntos
Cobre/química , Condutividade Elétrica , Temperatura Alta , Magnetismo , Modelos Químicos , Temperatura , Cobre/análise , Teste de Materiais , Teoria Quântica
3.
Phys Rev Lett ; 94(17): 177202, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15904331

RESUMO

Inelastic neutron scattering experiments on the S = 1 quasi-one-dimensional bond-alternating antiferromagnet Ni(C9D24N4)(NO2)ClO4 have been performed under magnetic fields below and above a critical field Hc at which the energy gap closes. Normal field dependence of Zeeman splitting of the excited triplet modes below Hc has been observed, but the highest mode is unusually small and smears out with increasing field. This can be explained by an interaction with a low-lying two magnon continuum at q(parallel) = pi that is present in dimerized chains but absent in uniform ones. Above Hc, we find only one excited mode, in stark contrast with three massive excitations previously observed in the structurally similar Haldane-gap material NDMAP [A. Zheludev, Phys. Rev. B 68, 134438 (2003)].

4.
Phys Rev Lett ; 93(3): 037207, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15323865

RESUMO

Elastic and inelastic neutron scattering experiments have been performed on the dimer spin system NH4CuCl3, which shows plateaus in the magnetization curve at m=1/4 and m=3/4 of the saturation value. Two structural phase transitions at T1 approximately 156 K and at T(2)=70 K lead to a doubling of the crystallographic unit cell along the b direction and as a consequence a segregation into different dimer subsystems. Long-range magnetic ordering is reported below T(N)=1.3 K. The magnetic field dependence of the excitation spectrum identifies successive quantum phase transitions of the dimer subsystems as the driving mechanism for the unconventional magnetization process in agreement with a recent theoretical model.

5.
Nature ; 423(6935): 62-5, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12721623

RESUMO

Bose-Einstein condensation denotes the formation of a collective quantum ground state of identical particles with integer spin or intrinsic angular momentum. In magnetic insulators, the magnetic properties are due to the unpaired shell electrons that have half-integer spin. However, in some such compounds (KCuCl3 and TlCuCl3), two Cu2+ ions are antiferromagnetically coupled to form a dimer in a crystalline network: the dimer ground state is a spin singlet (total spin zero), separated by an energy gap from the excited triplet state (total spin one). In these dimer compounds, Bose-Einstein condensation becomes theoretically possible. At a critical external magnetic field, the energy of one of the Zeeman split triplet components (a type of boson) intersects the ground-state singlet, resulting in long-range magnetic order; this transition represents a quantum critical point at which Bose-Einstein condensation occurs. Here we report an experimental investigation of the excitation spectrum in such a field-induced magnetically ordered state, using inelastic neutron scattering measurements of TlCuCl3 single crystals. We verify unambiguously the theoretically predicted gapless Goldstone mode characteristic of the Bose-Einstein condensation of the triplet states.

6.
Nature ; 415(6869): 299-302, 2002 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-11797002

RESUMO

One view of the high-transition-temperature (high-Tc) copper oxide superconductors is that they are conventional superconductors where the pairing occurs between weakly interacting quasiparticles (corresponding to the electrons in ordinary metals), although the theory has to be pushed to its limit. An alternative view is that the electrons organize into collective textures (for example, charge and spin stripes) which cannot be 'mapped' onto the electrons in ordinary metals. Understanding the properties of the material would then need quantum field theories of objects such as textures and strings, rather than point-like electrons. In an external magnetic field, magnetic flux penetrates type II superconductors via vortices, each carrying one flux quantum. The vortices form lattices of resistive material embedded in the non-resistive superconductor, and can reveal the nature of the ground state-for example, a conventional metal or an ordered, striped phase-which would have appeared had superconductivity not intervened, and which provides the best starting point for a pairing theory. Here we report that for one high-Tc superconductor, the applied field that imposes the vortex lattice also induces 'striped' antiferromagnetic order. Ordinary quasiparticle models can account for neither the strength of the order nor the nearly field-independent antiferromagnetic transition temperature observed in our measurements.

7.
Phys Rev Lett ; 87(17): 177203, 2001 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-11690306

RESUMO

The incommensurate magnetic soliton lattice in the high-field phase of a spin-Peierls system results from quantum fluctuations. We have used neutron scattering techniques to study CuGeO(3), allowing us to obtain the first complete characterization of the excitations of the soliton lattice. Three distinct excitation branches are observed, all of which are gapped. The two highest energy modes have minimum gaps at the commensurate wave vector and correspond to the creation or annihilation of soliton pairs. The third mode is incommensurate and is discussed in relation to theoretical predictions.

8.
Phys Rev Lett ; 84(19): 4469-72, 2000 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-10990713

RESUMO

CuGeO3 undergoes a transition from a spin-Peierls phase to an incommensurate phase at a critical field of H(c) approximately 12.5 T. In the high-field phase a lattice of solitons forms, with both structural and magnetic components, and these have been studied using neutron scattering techniques. Our results provide direct evidence for a long-ranged magnetic soliton structure which has both staggered and uniform magnetizations with amplitudes that are broadly in accord with theoretical estimates. The magnetic soliton width gamma(m) and the field dependence of the incommensurability deltak(SP) are found to agree well with theoretical predictions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA