Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Tumori ; 109(6): 546-554, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37486101

RESUMO

BACKGROUND: It is well documented that traditional health care models do not meet the specific needs of Adolescents and Young Adults (AYA) cancer patients. METHODS: We explore a map of the development of age-specific AYA cancer care across Europe, from the perspective of healthcare professionals with an interest in AYA care, in order to understand the specific challenges and map progress over time. An on-line survey was developed by international professional cancer organisations. RESULTS: We had 377 respondents from 60 countries. The majority of respondents were physicians 298 (79%), a minority of survey respondents (39, 10.4%) work exclusively with AYA patients, most respondents declared substantial and routine clinical service collaborations to provide care and treatment to AYA with cancer. Policy for the multidisciplinary management of AYA cancer patients commonly appears in Europe now, and was reported by 234 (78.52%) respondents. Specific professional training for AYA cancer care is not uniformly available. CONCLUSION: There is considerable opportunity for many organisations to work together in raising the profile of AYA cancer related issues, in providing education and in encouraging research and collaboration.


Assuntos
Neoplasias , Humanos , Adolescente , Adulto Jovem , Neoplasias/epidemiologia , Neoplasias/terapia , Atenção à Saúde , Europa (Continente)/epidemiologia , Pessoal de Saúde , Inquéritos e Questionários
2.
Cancers (Basel) ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36612316

RESUMO

Sarcopenia in pediatric hemato-oncology patients is undesirable because of the consequences it may have for treatment continuation and outcome, physical abilities and participation in daily life. An easy-to-use screening tool for sarcopenia will facilitate the identification of children at risk who need interventions to prevent serious physical deterioration. In the elderly, the use of the SARC-F score as a case-finding tool for sarcopenia is recommended. The aim of this cross-sectional study was to investigate the accuracy of the pediatric SARC-F (PED-SARC-F) for identifying sarcopenia in pediatric hemato-oncology patients, including the determination of a cut-off point for clinical use. Patients 3−20 years of age, under active treatment or within 12 months after treatment cessation were eligible. Patients had a physiotherapy assessment including a PED-SARC-F (0−10) and measurements of muscle strength (handheld dynamometry), physical performance (various tests) and/or muscle mass (bio-impedance analysis), as part of the standard of care. Spearman's correlation coefficient (rs) between the PED-SARC-F and physiotherapy outcomes were calculated. Structural sarcopenia was defined as low appendicular skeletal muscle mass (ASMM) in combination with low muscle strength and/or low physical performance. Functional sarcopenia indicated low muscle strength combined with low physical performance. Multiple logistic regression models were estimated to study the associations between the PED-SARC-F and structural/functional sarcopenia. To evaluate which cut-off point provides the most accurate classification, the area under the receiver operating characteristic curve (AUCs), sensitivity and specificity per point were calculated. In total, 215 assessments were included, 62% were performed in boys and the median age was 12.9 years (interquartile range: 8.5−15.8). The PED-SARC-F scores correlated moderately with the measurements of muscle strength (rs = −0.37 to −0.47, p < 0.001) and physical performance (rs = −0.45 to −0.66, p < 0.001), and weakly with ASMM (rs = −0.27, p < 0.001). The PED-SARC-F had an AUC of 0.90 (95% confidence interval (CI) = 0.84−0.95) for functional sarcopenia and 0.79 (95% CI = 0.68−0.90) for structural sarcopenia. A cut-off point of ≥5 had the highest specificity of 96% and a sensitivity of 74%. In conclusion, we adapted the SARC-F to a pediatric version, confirmed its excellent diagnostic accuracy for identifying functional sarcopenia and defined a clinically useful cut-off point in pediatric hemato-oncology patients.

3.
Haematologica ; 108(3): 717-731, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35484682

RESUMO

Rarely, immunophenotypically immature B-cell precursor acute lymphoblastic leukemia (BCP-ALL) carries an immunoglobulin- MYC rearrangement (IG-MYC-r). This can result in diagnostic confusion with Burkitt lymphoma/leukemia and use of individualized treatment schedules of unproven efficacy. Here we compare the molecular characteristics of these conditions and investigate historic clinical outcome data. We identified 90 cases registered in a national BCP-ALL clinical trial/registry. When present, diagnostic material underwent cytogenetic, exome, methylome and transcriptome analyses. The outcomes analyzed were 3-year event-free survival and overall survival. IG-MYC-r was identified in diverse cytogenetic backgrounds, co-existing with either established BCP-ALL-specific abnormalities (high hyperdiploidy, n=3; KMT2A-rearrangement, n=6; iAMP21, n=1; BCR-ABL1, n=1); BCL2/BCL6-rearrangements (n=15); or, most commonly, as the only defining feature (n=64). Within this final group, precursor-like V(D)J breakpoints predominated (8/9) and KRAS mutations were common (5/11). DNA methylation identified a cluster of V(D)J-rearranged cases, clearly distinct from Burkitt leukemia/lymphoma. Children with IG-MYC-r within that subgroup had a 3-year event-free survival of 47% and overall survival of 60%, representing a high-risk BCP-ALL. To develop effective management strategies this group of patients must be allowed access to contemporary, minimal residual disease-adapted, prospective clinical trial protocols.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Criança , Humanos , Linfoma de Burkitt/diagnóstico , Linfoma de Burkitt/genética , Linfoma de Burkitt/terapia , Estudos Prospectivos , Imunoglobulinas/genética , Rearranjo Gênico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia
4.
Cell Rep Med ; 3(8): 100717, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977468

RESUMO

Leukemia cells re-program their microenvironment to augment blast proliferation and enhance treatment resistance. Means of clinically targeting such niche-driven treatment resistance remain ambiguous. We develop human induced pluripotent stem cell (hiPSC)-engineered niches to reveal druggable cancer-niche dependencies. We reveal that mesenchymal (iMSC) and vascular niche-like (iANG) hiPSC-derived cells support ex vivo proliferation of patient-derived leukemia cells, affect dormancy, and mediate treatment resistance. iMSCs protect dormant and cycling blasts against dexamethasone, while iANGs protect only dormant blasts. Leukemia proliferation and protection from dexamethasone-induced apoptosis is dependent on cancer-niche interactions mediated by CDH2. Consequently, we test CDH2 antagonist ADH-1 (previously in Phase I/II trials for solid tumors) in a very aggressive patient-derived xenograft leukemia mouse model. ADH-1 shows high in vivo efficacy; ADH-1/dexamethasone combination is superior to dexamethasone alone, with no ADH-1-conferred additional toxicity. These findings provide a proof-of-concept starting point to develop improved, potentially safer therapeutics targeting niche-mediated cancer dependencies in blood cancers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucemia , Neoplasias , Animais , Medula Óssea/patologia , Dexametasona/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia/patologia , Camundongos , Neoplasias/patologia , Microambiente Tumoral
5.
BMJ Open ; 12(3): e059872, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246426

RESUMO

INTRODUCTION: Event-free survival rates at 15 years for paediatric patients with relapsed/refractory acute lymphoblastic leukaemia (ALL) are 30%-50%, with 5-year survival for adult patients only 20%. Many patients with newly diagnosed and relapsed ALL harbour somatic RAS-signalling activation mutations. Induction therapy for ALL involves steroids, with preclinical data suggesting the combination of dexamethasone with the MEK1/2 inhibitor, selumetinib (ARRY-142886) has a synergistic anticancer effect. METHODS AND ANALYSIS: The SeluDex trial is an international, parallel-group, dose-finding with expansion, phase I/II trial to assess the selumetinib/dexamethasone combination in adult and paediatric patients with relapsed/refractory, RAS pathway mutant ALL. The Cancer Research UK Clinical Trials Unit at University of Birmingham is the UK Coordinating Centre, with national hubs in Copenhagen, Denmark; Monza, Italy; Münster, Germany; Paris, France; and Utrecht, Netherlands. Patients with morphologically proven relapsed/refractory or progressive B-cell precursor or T-cell ALL, with demonstrated RAS pathway activating mutations are eligible. Adult patients are >18 years old, ECOG <2 and paediatric <18 years old, Lansky play scale ≥60% or Karnofsky score ≥60%. Phase I primary objective is the recommended phase II dose of selumetinib as defined by occurrence/non-occurrence of dose limiting toxicities using the continual reassessment method; phase II will evaluate preliminary antileukaemic activity of the combination, as defined by morphological response 28 days post-treatment using a Bayesian approach. Target recruitment is between 26 and 42 patients (minimum 13 and maximum 21 per group), depending the number of phase I patients included in phase II. ETHICS AND DISSEMINATION: Medical ethical committees of all the participating countries have approved the study protocol; initial (UK) ethics approval (17/YH/0123) was granted by Yorkshire & The Humber-Leeds West Research Ethics Committee. Participants are required to provide written informed consent/assent. Results will be disseminated through national and international presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER: ISRCTN92323261.


Assuntos
Benzimidazóis , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Teorema de Bayes , Benzimidazóis/uso terapêutico , Criança , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Dexametasona , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
6.
Eur J Cancer ; 164: 1-17, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121370

RESUMO

Despite improved outcomes achieved in the last decades for children with newly diagnosed leukaemia and lymphoma, treatment of patients with refractory/relapsed disease remains a challenge. The cure rate is still unsatisfactory and often achieved at the cost of significant morbidity. Exploring treatment with novel agents should offer less toxic therapeutic options, without compromising efficacy. Bispecific and antibody-drug conjugates targeting CD19 and CD22 (blinatumomab and inotuzumab ozogamicin) play an important role in the treatment of relapsed and refractory B-cell precursor acute lymphoblastic leukaemia (BCP-ALL); antibodies targeting CD123 and CD38 are also under investigation for acute myeloid leukaemia (AML) and T-ALL, respectively. Targeted therapy with small molecules is of primary importance for specific genetic subtypes, such as BCR-ABL-positive ALL, FLT3-ITD AML and anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma. KMT2A-directed targeted therapy with menin inhibitors holds promise to be of relevance in KMT2A-rearranged leukaemias, known to have dismal prognosis. Target inhibition in cellular pathways such as BCL-2, RAS, MEK, Bruton's tyrosine kinase, JAK-STAT or CDK4/CDK6 inhibition may be suitable for different diseases with common mutated pathways. Nevertheless, development and approval of new agents for paediatric cancers lags behind adult therapeutic options. New regulations were implemented to accelerate drug development for children. Considering the number of oncology medicinal products available for adults and the rarity of paediatric cancers, prioritisation based on scientific evidence and medical need, as well as international collaboration, is critical. Herein, we review the current status of drug development for children with leukaemia and lymphoma, excluding cellular therapy despite its well-known significance.


Assuntos
Leucemia Mieloide Aguda , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Criança , Humanos , Imunoterapia , Inotuzumab Ozogamicina , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
7.
Leukemia ; 35(12): 3394-3405, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34007050

RESUMO

(Patho-)physiological activation of the IL7-receptor (IL7R) signaling contributes to steroid resistance in pediatric T-cell acute lymphoblastic leukemia (T-ALL). Here, we show that activating IL7R pathway mutations and physiological IL7R signaling activate MAPK-ERK signaling, which provokes steroid resistance by phosphorylation of BIM. By mass spectrometry, we demonstrate that phosphorylated BIM is impaired in binding to BCL2, BCLXL and MCL1, shifting the apoptotic balance toward survival. Treatment with MEK inhibitors abolishes this inactivating phosphorylation of BIM and restores its interaction with anti-apoptotic BCL2-protein family members. Importantly, the MEK inhibitor selumetinib synergizes with steroids in both IL7-dependent and IL7-independent steroid resistant pediatric T-ALL PDX samples. Despite the anti-MAPK-ERK activity of ruxolitinib in IL7-induced signaling and JAK1 mutant cells, ruxolitinib only synergizes with steroid treatment in IL7-dependent steroid resistant PDX samples but not in IL7-independent steroid resistant PDX samples. Our study highlights the central role for MAPK-ERK signaling in steroid resistance in T-ALL patients, and demonstrates the broader application of MEK inhibitors over ruxolitinib to resensitize steroid-resistant T-ALL cells. These findings strongly support the enrollment of T-ALL patients in the current phase I/II SeluDex trial (NCT03705507) and contributes to the optimization and stratification of newly designed T-ALL treatment regimens.


Assuntos
Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Esteroides/farmacologia , Animais , Apoptose , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Interleucina-7 , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores de Interleucina-7 , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Haematologica ; 106(4): 1056-1066, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32139432

RESUMO

T-cell Acute Lymphoblastic Leukemia (T-ALL) is frequently characterized by glucocorticoid (GC) resistance, which is associated with inferior outcomes, thus highlighting the need for novel therapeutic approaches for GC resistant T-ALL. The pTCR/TCR signaling pathways play a critical role in cell fate decisions during physiological thymocyte development, with an interplay between TCR and glucocorticoid receptor (GR) signaling determining the T-lymphocyte selection process. We performed an shRNA screen in vitro and in vivo in T-ALL cell lines and patient derived xenograft (PDX) samples to identify vulnerabilities in the pTCR/TCR pathway and identified a critical role for the kinase LCK in cell proliferation. LCK knockdown or inhibition with dasatinib (DAS) caused cell cycle arrest. Combination of DAS with dexamethasone (DEX) resulted in significant drug synergy leading to cell death. The efficacy of this drug combination was underscored in a randomized phase II-like murine trial, recapitulating an early phase human clinical trial. T-ALL expansion in immunocompromised mice was significantly impaired using this drug combination, relative to mice receiving control vehicle or single drug treatment, highlighting the immediate clinical relevance of this drug combination for high risk T-ALL patients. Our results thus provide a strategy to improve the efficacy of current chemotherapy platforms and circumvent GC resistance.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Apoptose , Linhagem Celular Tumoral , Dasatinibe/farmacologia , Dexametasona/farmacologia , Resistencia a Medicamentos Antineoplásicos , Glucocorticoides/farmacologia , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfócitos T
11.
J Inherit Metab Dis ; 42(2): 286-294, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30815900

RESUMO

BACKGROUND: Farber disease (FD) is a rare, lysosomal storage disorder caused by deficient acid ceramidase activity. FD has long been considered a fatal disorder with death in the first three decades of life resulting either from respiratory insufficiency as a consequence of airway involvement or from progressive neurodegeneration because of nervous system involvement. Peripheral symptoms associated with FD, including inflammatory joint disease, have been described to improve relatively rapidly after hematopoietic cell transplantation (HCT). AIMS: To evaluate the disease-specific status and limitations in the long-term follow-up after HCT, investigate genotype/phenotype correlations and the benefit of allogeneic HCT in FD patients with nervous system involvement. PATIENTS AND METHODS: Transplant- and disease-related information of ten FD patients was obtained by using a questionnaire, physicians' letters and additional telephone surveys. ASAH1 gene mutations were identified to search for genotype/phenotype correlations. RESULTS: After mainly busulfan-based preparative regimens, all patients engrafted with one late graft loss. The inflammatory symptoms resolved completely in all patients. Abnormal neurologic findings were present pre-transplant in 4/10 patients, post-transplant in 6/10 patients. Mutational analyses revealed new mutations in the ASAH1 gene and a broad diversity of phenotypes without a genotype/phenotype correlation. With a median follow-up of 10.4 years, overall survival was 80% with two transplant-related deaths. CONCLUSION: Allogeneic HCT leads to complete and persistent resolution of the inflammatory aspects in FD patients. It appears to have no beneficial effect on progression of nervous system involvement. New mutations in the acid ceramidase gene were identified. A genotype/phenotype correlation could not be established.


Assuntos
Ceramidase Ácida/genética , Lipogranulomatose de Farber/genética , Lipogranulomatose de Farber/terapia , Transplante de Células-Tronco Hematopoéticas , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Internacionalidade , Masculino , Mutação , Taxa de Sobrevida , Condicionamento Pré-Transplante
12.
Haematologica ; 104(9): 1804-1811, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30655370

RESUMO

New drugs are needed for the treatment of relapsed acute lymphoblastic leukemia and preclinical evaluation of the MEK inhibitor, selumetinib, has shown that this drug has excellent activity in those leukemias with RAS pathway mutations. The proapoptotic protein, BIM is pivotal in the induction of cell death by both selumetinib and glucocorticoids, suggesting the potential for synergy. Thus, combination indices for dexamethasone and selumetinib were determined in RAS pathway-mutated acute lymphoblastic leukemia primagraft cells in vitro and were indicative of strong synergism (combination index <0.2; n=5). Associated pharmacodynamic assays were consistent with the hypothesis that the drug combination enhanced BIM upregulation over that achieved by a single drug alone. Dosing of dexamethasone and selumetinib singly and in combination in mice engrafted with primary-derived RAS pathway-mutated leukemia cells resulted in a marked reduction in spleen size which was significantly greater with the drug combination. Assessment of the central nervous system leukemia burden showed a significant reduction in the drug-treated mice, with no detectable leukemia in those treated with the drug combination. These data suggest that a selumetinib-dexamethasone combination may be highly effective in RAS pathway-mutated acute lymphoblastic leukemia. An international phase I/II clinical trial of dexamethasone and selumetinib (Seludex trial) is underway in children with multiply relapsed/refractory disease.


Assuntos
Proteína 11 Semelhante a Bcl-2/metabolismo , Benzimidazóis/administração & dosagem , Glucocorticoides/administração & dosagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas ras/genética , Adolescente , Animais , Criança , Pré-Escolar , Análise Mutacional de DNA , Dexametasona/administração & dosagem , Sinergismo Farmacológico , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Transplante de Neoplasias , Regulação para Cima
13.
Cancer Cell ; 34(4): 626-642.e8, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30300583

RESUMO

Oncogenic transcription factors such as the leukemic fusion protein RUNX1/ETO, which drives t(8;21) acute myeloid leukemia (AML), constitute cancer-specific but highly challenging therapeutic targets. We used epigenomic profiling data for an RNAi screen to interrogate the transcriptional network maintaining t(8;21) AML. This strategy identified Cyclin D2 (CCND2) as a crucial transmitter of RUNX1/ETO-driven leukemic propagation. RUNX1/ETO cooperates with AP-1 to drive CCND2 expression. Knockdown or pharmacological inhibition of CCND2 by an approved drug significantly impairs leukemic expansion of patient-derived AML cells and engraftment in immunodeficient murine hosts. Our data demonstrate that RUNX1/ETO maintains leukemia by promoting cell cycle progression and identifies G1 CCND-CDK complexes as promising therapeutic targets for treatment of RUNX1/ETO-driven AML.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Ciclina D2/genética , Animais , Linhagem Celular Tumoral , Cromossomos Humanos Par 21/genética , Regulação Leucêmica da Expressão Gênica/genética , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Camundongos , Proteínas de Fusão Oncogênica/genética , Oncogenes/genética , Translocação Genética/genética
15.
Future Oncol ; 14(21): 2115-2129, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29595064

RESUMO

Venetoclax is a highly selective, potent BCL-2 inhibitor that is approved for some patients previously treated for chronic lymphocytic leukemia, and has shown promising activity in adult studies across several hematologic malignancies. Preclinical studies have demonstrated venetoclax activity in pediatric patient-derived xenograft models and cell lines; however, clinical studies in pediatric patients have yet to be conducted. The prognosis is poor for children with most relapsed/refractory malignancies, and limited treatment options result in unmet clinical need. Herein, we describe the rationale and design of the first study of venetoclax in pediatric patients with relapsed/refractory malignancies: a Phase I trial investigating the safety and pharmacokinetics of venetoclax monotherapy followed by the addition of chemotherapy (Trial registration: EudraCT 2017-000439-14; NCT03236857).


Assuntos
Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Protocolos Clínicos , Desenvolvimento de Medicamentos , Neoplasias/tratamento farmacológico , Sulfonamidas/uso terapêutico , Fatores Etários , Antineoplásicos/farmacologia , Biomarcadores , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Pré-Escolar , Resistencia a Medicamentos Antineoplásicos , Humanos , Recidiva , Projetos de Pesquisa , Sulfonamidas/farmacologia , Resultado do Tratamento
16.
Lancet Oncol ; 18(7): e394-e404, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28677575

RESUMO

New drugs are crucially needed for children with cancer. The European Paediatric Regulation facilitates paediatric class waivers for drugs developed for diseases only occurring in adults. In this Review, we retrospectively searched oncology drugs that were class waivered between June, 2012, and June, 2015. 147 oncology class waivers were confirmed for 89 drugs. Mechanisms of action were then assessed as potential paediatric therapeutic targets by both a literature search and an expert review. 48 (54%) of the 89 class-waivered drugs had a mechanisms of action warranting paediatric development. Two (2%) class-waivered drugs were considered not relevant and 16 (18%) required further data. In light of these results, we propose five initiatives: an aggregated database of paediatric biological tumour drug targets; molecular profiling of all paediatric tumours at diagnosis and relapse; a joint academic-pharmaceutical industry preclinical platform to help analyse the activity of new drugs (Innovative Therapy for Children with Cancer Paediatric Preclinical Proof-of-Concept Platform); paediatric strategy forums; and the suppression of article 11b of the European Paediatric Regulation, which allows product-specific waivers on the grounds that the associated condition does not occur in children. These initiatives and a mechanism of action-based approach to drug development will accelerate the delivery of new therapeutic drugs for front-line therapy for those children who have unmet medical needs.


Assuntos
Antineoplásicos/uso terapêutico , Legislação de Medicamentos , Neoplasias/tratamento farmacológico , Medicina de Precisão , Adolescente , Antineoplásicos/farmacologia , Produtos Biológicos/uso terapêutico , Criança , Pré-Escolar , Descoberta de Drogas/legislação & jurisprudência , Europa (Continente) , Humanos , Lactente , Recém-Nascido
17.
Nat Rev Clin Oncol ; 14(8): 497-507, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28508875

RESUMO

In the past decade, the landscape of drug development in oncology has evolved dramatically; however, this paradigm shift remains to be adopted in early phase clinical trial designs for studies of molecularly targeted agents and immunotherapeutic agents in paediatric malignancies. In drug development, prioritization of drugs on the basis of knowledge of tumour biology, molecular 'drivers' of disease and a drug's mechanism of action, and therapeutic unmet needs are key elements; these aspects are relevant to early phase paediatric trials, in which molecular profiling is strongly encouraged. Herein, we describe the strategy of the Innovative Therapies for Children with Cancer (ITCC) Consortium, which advocates for the adoption of trial designs that enable uninterrupted patient recruitment, the extrapolation from studies in adults when possible, and the inclusion of expansion cohorts. If a drug has neither serious dose-related toxicities nor a narrow therapeutic index, then studies should generally be started at the adult recommended phase II dose corrected for body surface area, and act as dose-confirmation studies. The use of adaptive trial designs will enable drugs with promising activity to progress rapidly to randomized studies and, therefore, will substantially accelerate drug development for children and adolescents with cancer.


Assuntos
Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Neoplasias/tratamento farmacológico , Adolescente , Serviços de Saúde do Adolescente , Criança , Serviços de Saúde da Criança , Europa (Continente) , Humanos , Sociedades Médicas
18.
Br J Clin Pharmacol ; 83(8): 1713-1722, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28177130

RESUMO

AIMS: AT9283 is used to treat patients with solid tumours and patients with leukaemia. However, the maximum tolerated dose (MTD) for children with leukaemia remains unknown due to early termination of the Phase I trial. The aim of this study was to develop a population model of AT9283 to describe the pharmacokinetics in adults and children and to estimate the MTD in children with leukaemia. METHODS: Data from Phase I dose-escalation studies in adults and children were used to build a population pharmacokinetic model (NONMEM v7.3). Potential covariates investigated included body weight, body surface area (BSA), glomerular filtration rate (GFR), age and sex. Model-derived area under the concentration-time curve was used to investigate the relationship between dose and exposure in adults and children. RESULTS: The plasma concentrations of AT9283 (n = 1770) from 92 patients (53 adults, 39 children) were used to build a two-compartment model with all pharmacokinetic parameters scaled using body weight. Renal function (GFR), but not BSA, was a significant covariate for the clearance of AT9283. In children with leukaemia (median weight 16 kg), a flat dose of 500 mg 72 h-1 provided similar drug exposures at the MTD as the adult population. The estimated MTD for children with leukaemia, therefore, is 30 mg kg-1  72 h-1 . CONCLUSION: For adults, GFR was a significant predictor of clearance, whilst body-weight based dosing was more useful than BSA in determining the drug exposure in children. The MTD was estimated to be 30 mg kg-1  72 h-1 children with leukaemia.


Assuntos
Antineoplásicos/farmacocinética , Benzimidazóis/farmacocinética , Leucemia/tratamento farmacológico , Dose Máxima Tolerável , Inibidores de Proteínas Quinases/farmacocinética , Ureia/análogos & derivados , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Benzimidazóis/uso terapêutico , Superfície Corporal , Criança , Pré-Escolar , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Relação Dose-Resposta a Droga , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Modelos Biológicos , Inibidores de Proteínas Quinases/uso terapêutico , Ureia/farmacocinética , Ureia/uso terapêutico , Adulto Jovem
19.
Cancer Cell ; 30(6): 825-826, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27960078

RESUMO

In this issue of Cancer Cell, Ebinger et al. describe rare, non-cycling blasts in acute lymphoblastic leukemia that combine the phenotypes of dormancy, stemness, and chemo-resistance. This novel in vivo model for dormant blasts will facilitate the dissection of the niche and the development of therapies targeting the leukemic microenvironment.


Assuntos
Antineoplásicos/uso terapêutico , Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Mutação , Células-Tronco Neoplásicas/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Microambiente Tumoral/efeitos dos fármacos
20.
Blood ; 127(16): 1998-2006, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26869395

RESUMO

Prevention of central nervous system (CNS) relapse is critical for cure of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Despite this, mechanisms of CNS infiltration are poorly understood, and the timing, frequency, and properties of BCP-ALL blasts entering the CNS compartment are unknown. We investigated the CNS-engrafting potential of BCP-ALL cells xenotransplanted into immunodeficient NOD.Cg- ITALIC! Prkdc (ITALIC! scid) ITALIC! Il2rg (ITALIC! tm1Wjl)/SzJ mice. CNS engraftment was seen in 23 of 29 diagnostic samples (79%): 2 of 2 from patients with overt CNS disease and 21 of 27 from patients thought to be CNS negative by diagnostic lumbar puncture. Histologic findings mimic human pathology and demonstrate that leukemic cells transit the blood-cerebrospinal fluid barrier situated close to the dural sinuses, the site of recently discovered CNS lymphatics. Retrieval of blasts from the CNS showed no evidence for chemokine receptor-mediated selective trafficking. The high frequency of infiltration and lack of selective trafficking led us to postulate that CNS tropism is a generic property of leukemic cells. To test this, we performed serial dilution experiments which showed CNS engraftment in 5 of 6 mice after transplant of as few as 10 leukemic cells. Clonal tracking techniques confirmed the polyclonal nature of CNS-infiltrating cells, with multiple clones engrafting in both the CNS and periphery. Overall, these findings suggest that subclinical seeding of the CNS is likely to be present in most BCP-ALL patients at original diagnosis, and efforts to prevent CNS relapse should concentrate on effective eradication of disease from this site rather than targeting entry mechanisms.


Assuntos
Barreira Hematoencefálica/patologia , Movimento Celular/fisiologia , Sistema Nervoso Central/patologia , Infiltração Leucêmica/patologia , Leucócitos/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Animais , Células Cultivadas , Neoplasias do Sistema Nervoso Central/líquido cefalorraquidiano , Neoplasias do Sistema Nervoso Central/secundário , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Transplante de Neoplasias , Recidiva , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA