Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(23): 15400-15411, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34151118

RESUMO

The number of candidate molecules for new non-narcotic analgesics is extremely limited. Here, we report the identification of thiowurtzine, a new potent analgesic molecule with promising application in chronic pain treatment. We describe the chemical synthesis of this unique compound derived from the hexaazaisowurtzitane (CL-20) explosive molecule. Then, we use animal experiments to assess its analgesic activity in vivo upon chemical, thermal, and mechanical exposures, compared to the effect of several reference drugs. Finally, we investigate the potential receptors of thiowurtzine in order to better understand its complex mechanism of action. We use docking, molecular modeling, and molecular dynamics simulations to identify and characterize the potential targets of the drug and confirm the results of the animal experiments. Our findings finally indicate that thiowurtzine may have a complex mechanism of action by essentially targeting the mu opioid receptor, the TRPA1 ion channel, and the Cav voltage-gated calcium channel.

2.
Molecules ; 24(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816831

RESUMO

The dynamic sorption concentration of explosive vapours on concentrators made of a metal mesh, and the transportation of explosive vapours through the extended metal channels are considered. The efficiency of the concentration and transportation is determined by the breakthrough of the substance's molecules through the channels. The research methods we used were breakthrough calculation theory and experiment. When calculating the breakthrough, a mesh was presented as a set of parallel identical channels. Wire mesh and extended channels were made of stainless steel. The breakthrough is determined through the specific frequency of the collisions between the molecules and the channel's surface. This is presented as a function of the ratio of the substance diffusion flow to the channel's surface to the airflow through the channel. The conditions for high-speed concentration, complete capture of explosive vapours, and low vapour losses during their transportation through the extended channels were determined theoretically and experimentally. For a concentrator made of a mesh, the condition of a high concentration rate at a high breakthrough (up to 80%) was determined. The described sorption concentration is used in portable gas chromatographic detectors of explosive vapours of the EKHO series.


Assuntos
Cromatografia Gasosa/instrumentação , Substâncias Explosivas/análise , Monitoramento Ambiental/instrumentação , Gases , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA