Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961398

RESUMO

Urine is assayed alongside blood in medicine, yet current clinical diagnostic tests utilize only a small fraction of its total biomolecular repertoire, potentially foregoing high-resolution insights into human health and disease. In this work, we characterized the joint landscapes of transcriptomic and metabolomic signals in human urine. We also compared the urine transcriptome to plasma cell-free RNA, identifying a distinct cell type repertoire and enrichment for metabolic signal. Untargeted metabolomic measurements identified a complementary set of pathways to the transcriptomic analysis. Our findings suggest that urine is a promising biofluid yielding prognostic and detailed insights for hard-to-biopsy tissues with low representation in the blood, offering promise for a new generation of liquid biopsies.

3.
Nature ; 602(7898): 689-694, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140405

RESUMO

Liquid biopsies that measure circulating cell-free RNA (cfRNA) offer an opportunity to study the development of pregnancy-related complications in a non-invasive manner and to bridge gaps in clinical care1-4. Here we used 404 blood samples from 199 pregnant mothers to identify and validate cfRNA transcriptomic changes that are associated with preeclampsia, a multi-organ syndrome that is the second largest cause of maternal death globally5. We find that changes in cfRNA gene expression between normotensive and preeclamptic mothers are marked and stable early in gestation, well before the onset of symptoms. These changes are enriched for genes specific to neuromuscular, endothelial and immune cell types and tissues that reflect key aspects of preeclampsia physiology6-9, suggest new hypotheses for disease progression and correlate with maternal organ health. This enabled the identification and independent validation of a panel of 18 genes that when measured between 5 and 16 weeks of gestation can form the basis of a liquid biopsy test that would identify mothers at risk of preeclampsia long before clinical symptoms manifest themselves. Tests based on these observations could help predict and manage who is at risk for preeclampsia-an important objective for obstetric care10,11.


Assuntos
Ácidos Nucleicos Livres , Diagnóstico Precoce , Pré-Eclâmpsia , RNA , Pressão Sanguínea , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Feminino , Humanos , Mães , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/genética , Gravidez , RNA/sangue , RNA/genética , Transcriptoma
4.
Nat Biotechnol ; 40(6): 855-861, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35132263

RESUMO

Cell-free RNA from liquid biopsies can be analyzed to determine disease tissue of origin. We extend this concept to identify cell types of origin using the Tabula Sapiens transcriptomic cell atlas as well as individual tissue transcriptomic cell atlases in combination with the Human Protein Atlas RNA consensus dataset. We define cell type signature scores, which allow the inference of cell types that contribute to cell-free RNA for a variety of diseases.


Assuntos
Ácidos Nucleicos Livres , Transcriptoma , Humanos , Transcriptoma/genética
5.
Biochemistry ; 53(18): 2956-65, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24730580

RESUMO

Indolethylamine-N-methyltransferase (INMT) is a Class 1 transmethylation enzyme known for its production of N,N-dimethyltryptamine (DMT), a hallucinogen with affinity for various serotonergic, adrenergic, histaminergic, dopaminergic, and sigma-1 receptors. DMT is produced via the action of INMT on the endogenous substrates tryptamine and S-adenosyl-l-methionine (SAM). The biological, biochemical, and selective small molecule regulation of INMT enzyme activity remain largely unknown. Kinetic mechanisms for inhibition of rabbit lung INMT (rabINMT) by the product, DMT, and by a new novel tryptamine derivative were determined. After Michaelis-Menten and Lineweaver-Burk analyses had been applied to study inhibition, DMT was found to be a mixed competitive and noncompetitive inhibitor when measured against tryptamine. The novel tryptamine derivative, N-[2-(1H-indol-3-yl)ethyl]-N',N'-dimethylpropane-1,3-diamine (propyl dimethyl amino tryptamine or PDAT), was shown to inhibit rabINMT by a pure noncompetitive mechanism when measured against tryptamine with a Ki of 84 µM. No inhibition by PDAT was observed at 2 mM when it was tested against structurally similar Class 1 methyltransferases, such as human phenylethanolamine-N-methyltransferase (hPNMT) and human nicotinamide-N-methyltransferase (hNNMT), indicating selectivity for INMT. The demonstration of noncompetitive mechanisms for INMT inhibition implies the presence of an inhibitory allosteric site. In silico analyses using the computer modeling software Autodock and the rabINMT sequence threaded onto the human INMT (hINMT) structure (Protein Data Bank entry 2A14 ) identified an N-terminal helix-loop-helix non-active site binding region of the enzyme. The energies for binding of DMT and PDAT to this region of rabINMT, as determined by Autodock, were -6.34 and -7.58 kcal/mol, respectively. Assessment of the allosteric control of INMT may illuminate new biochemical pathway(s) underlying the biology of INMT.


Assuntos
Metiltransferases/antagonistas & inibidores , N,N-Dimetiltriptamina/farmacologia , Triptaminas/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Cinética , Pulmão/enzimologia , Metiltransferases/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA