Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nat Rev Neurol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724589

RESUMO

The development of biomarkers for Alzheimer disease (AD) has led to the origin of suspected non-AD pathophysiology (SNAP) - a heterogeneous biomarker-based concept that describes individuals with normal amyloid and abnormal tau and/or neurodegeneration biomarker status. In this Review, we describe the origins of the SNAP construct, along with its prevalence, diagnostic and prognostic implications, and underlying neuropathology. As we discuss, SNAP can be operationalized using different biomarker modalities, which could affect prevalence estimates and reported characteristics of SNAP in ways that are not yet fully understood. Moreover, the underlying aetiologies that lead to a SNAP biomarker profile, and whether SNAP is the same in people with and without cognitive impairment, remains unclear. Improved insight into the clinical characteristics and pathophysiology of SNAP is of major importance for research and clinical practice, as well as for trial design to optimize care and treatment of individuals with SNAP.

2.
J Clin Invest ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753433

RESUMO

Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells were key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings established contextual roles of p21+ vs p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.

3.
Comput Biol Med ; 176: 108588, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38761503

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative condition for which there is currently no available medication that can stop its progression. Previous studies suggest that mild cognitive impairment (MCI) is a phase that precedes the disease. Therefore, a better understanding of the molecular mechanisms behind MCI conversion to AD is needed. METHOD: Here, we propose a machine learning-based approach to detect the key metabolites and proteins involved in MCI progression to AD using data from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Study. Proteins and metabolites were evaluated separately in multiclass models (controls, MCI and AD) and together in MCI conversion models (MCI stable vs converter). Only features selected as relevant by 3/4 algorithms proposed were kept for downstream analysis. RESULTS: Multiclass models of metabolites highlighted nine features further validated in an independent cohort (0.726 mean balanced accuracy). Among these features, one metabolite, oleamide, was selected by all the algorithms. Further in-vitro experiments in rodents showed that disease-associated microglia excreted oleamide in vesicles. Multiclass models of proteins stood out with nine features, validated in an independent cohort (0.720 mean balanced accuracy). However, none of the proteins was selected by all the algorithms. Besides, to distinguish between MCI stable and converters, 14 key features were selected (0.872 AUC), including tTau, alpha-synuclein (SNCA), junctophilin-3 (JPH3), properdin (CFP) and peptidase inhibitor 15 (PI15) among others. CONCLUSIONS: This omics integration approach highlighted a set of molecules associated with MCI conversion important in neuronal and glia inflammation pathways.

4.
medRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496672

RESUMO

The co-occurrence of insulin resistance (IR)-related metabolic conditions with neuropsychiatric disorders is a complex public health challenge. Evidence of the genetic links between these phenotypes is emerging, but little is currently known about the genomic regions and biological functions that are involved. To address this, we performed Local Analysis of [co]Variant Association (LAVA) using large-scale (N=9,725-933,970) genome-wide association studies (GWASs) results for three IR-related conditions (type 2 diabetes mellitus, obesity, and metabolic syndrome) and nine neuropsychiatric disorders. Subsequently, positional and expression quantitative trait locus (eQTL)-based gene mapping and downstream functional genomic analyses were performed on the significant loci. Patterns of negative and positive local genetic correlations (|rg|=0.21-1, pFDR<0.05) were identified at 109 unique genomic regions across all phenotype pairs. Local correlations emerged even in the absence of global genetic correlations between IR-related conditions and Alzheimer's disease, bipolar disorder, and Tourette's syndrome. Genes mapped to the correlated regions showed enrichment in biological pathways integral to immune-inflammatory function, vesicle trafficking, insulin signalling, oxygen transport, and lipid metabolism. Colocalisation analyses further prioritised 10 genetically correlated regions for likely harbouring shared causal variants, displaying high deleterious or regulatory potential. These variants were found within or in close proximity to genes, such as SLC39A8 and HLA-DRB1, that can be targeted by supplements and already known drugs, including omega-3/6 fatty acids, immunomodulatory, antihypertensive, and cholesterol-lowering drugs. Overall, our findings underscore the complex genetic landscape of IR-neuropsychiatric multimorbidity, advocating for an integrated disease model and offering novel insights for research and treatment strategies in this domain.

5.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370844

RESUMO

Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells are key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings establish contextual roles of p21+ vs p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.

6.
Neurosci Biobehav Rev ; 159: 105604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423195

RESUMO

Conflicting evidence exists on the relationship between diabetes mellitus (DM) and Alzheimer's disease (AD) biomarkers. Therefore, we conducted a random-effects meta-analysis to evaluate the correlation of glucose metabolism measures (glycated hemoglobin, fasting blood glucose, insulin resistance indices) and DM status with AD biomarkers of amyloid-ß and tau measured by positron emission tomography or cerebrospinal fluid. We selected 37 studies from PubMed and Embase, including 11,694 individuals. More impaired glucose metabolism and DM status were associated with higher tau biomarkers (r=0.11[0.03-0.18], p=0.008; I2=68%), but were not associated with amyloid-ß biomarkers (r=-0.06[-0.13-0.01], p=0.08; I2=81%). Meta-regression revealed that glucose metabolism and DM were specifically associated with tau biomarkers in population settings (p=0.001). Furthermore, more impaired glucose metabolism and DM status were associated with lower amyloid-ß biomarkers in memory clinic settings (p=0.004), and in studies with a higher prevalence of dementia (p<0.001) or lower cognitive scores (p=0.04). These findings indicate that DM is associated with biomarkers of tau but not with amyloid-ß. This knowledge is valuable for improving dementia and DM diagnostics and treatment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Diabetes Mellitus , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Biomarcadores , Disfunção Cognitiva/metabolismo , Glucose , Fragmentos de Peptídeos , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau
7.
J Alzheimers Dis Rep ; 7(1): 1299-1311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143773

RESUMO

Background: Alzheimer's disease pathology and vascular burden are highly prevalent and often co-occur in elderly. It remains unclear how both relate to cognitive decline. Objective: To investigate whether amyloid abnormality and vascular burden synergistically contribute to cognitive decline in a memory clinic population. Methods: We included 227 patients from Maastricht and Aachen memory clinics. Amyloid abnormality (A+) was defined by CSF Aß42 using data-driven cut-offs. Vascular burden (V+) was defined as having moderate to severe white matter hyperintensities, or any microbleeds, macrohemorrhage or infarcts on MRI. Longitudinal change in global cognition, memory, processing speed, executive functioning, and verbal fluency was analysed across the A-V-, A-V+, A+V-, A+V+ groups by linear mixed models. Additionally, individual MRI measures, vascular risk and vascular disease were used as V definitions. Results: At baseline, the A+V+ group scored worse on global cognition and verbal fluency compared to all other groups, and showed worse memory compared to A-V+ and A-V- groups. Over time (mean 2.7+ - 1.5 years), A+V+ and A+V- groups showed faster global cognition decline than A-V+ and A-V- groups. Only the A+V- group showed decline on memory and verbal fluency. The A-V+ group did not differ from the A-V- group. Individual MRI vascular measures only indicated an independent association of microbleeds with executive functioning decline. Findings were similar using other V definitions. Conclusions: Our study demonstrates that amyloid abnormality predicts cognitive decline independent from vascular burden in a memory clinic population. Vascular burden shows a minor contribution to cognitive decline in these patients. This has important prognostic implications.

8.
JBMR Plus ; 7(10): e10797, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37808391

RESUMO

Estrogen regulates bone mass in women and men, but the underlying cellular mechanisms of estrogen action on bone remain unclear. Although both estrogen receptor (ER)α and ERß are expressed in bone cells, ERα is the dominant receptor for skeletal estrogen action. Previous studies using either global or cell-specific ERα deletion provided important insights, but each of these approaches had limitations. Specifically, either high circulating sex steroid levels in global ERα knockout mice or the effects of deletion of ERα during growth and development in constitutive cell-specific knockout mice have made it difficult to clearly define the role of ERα in specific cell types in the adult skeleton. We recently generated and characterized mice with tamoxifen-inducible ERα deletion in osteocytes driven by the 8-kb Dmp1 promoter (ERαΔOcy mice), revealing detrimental effects of osteocyte-specific ERα deletion on trabecular bone volume (-20.1%) and bone formation rate (-18.9%) in female, but not male, mice. Here, we developed and characterized analogous mice with inducible ERα deletion in osteoclasts using the Cathepsin K promoter (ERαΔOcl mice). In a study design identical to that with the previously described ERαΔOcy mice, adult female, but not male, ERαΔOcl mice showed a borderline (-10.2%, p = 0.084) reduction in trabecular bone volume, no change in osteoclast numbers, but a significant increase in serum CTx levels, consistent with increased osteoclast activity. These findings in ERαΔOcl mice differ from previous studies of constitutive osteoclast-specific ERα deletion, which led to clear deficits in trabecular bone and increased osteoclast numbers. Collectively, these data indicate that in adult mice, estrogen action in the osteocyte is likely more important than via the osteoclast and that ERα deletion in osteoclasts from conception onward has more dramatic skeletal effects than inducible osteoclastic ERα deletion in adult mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
Nat Commun ; 14(1): 4587, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524694

RESUMO

Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we apply mass cytometry by time-of-flight using carefully validated antibodies to analyze senescent cells at single-cell resolution. We use multiple criteria to identify senescent mesenchymal cells that are growth-arrested and resistant to apoptosis. These p16 + Ki67-BCL-2+ cells are highly enriched for senescence-associated secretory phenotype and DNA damage markers, are strongly associated with age, and their percentages are increased in late osteoblasts/osteocytes and CD24high osteolineage cells. Moreover, both late osteoblasts/osteocytes and CD24high osteolineage cells are robustly cleared by genetic and pharmacologic senolytic therapies in aged mice. Following isolation, CD24+ skeletal cells exhibit growth arrest, senescence-associated ß-galactosidase positivity, and impaired osteogenesis in vitro. These studies thus provide an approach using multiplexed protein profiling to define senescent mesenchymal cells in vivo and identify specific skeletal cell populations cleared by senolytics.


Assuntos
Senescência Celular , Senoterapia , Camundongos , Animais , Senescência Celular/genética , Envelhecimento/genética , Osteoblastos , Esqueleto
10.
Alzheimers Dement ; 19(8): 3350-3364, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36790009

RESUMO

INTRODUCTION: This study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. METHODS: Using the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). RESULTS: AT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DISCUSSION: This study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Multiômica , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
11.
J Clin Invest ; 133(8)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36809340

RESUMO

Clearance of senescent cells (SnCs) can prevent several age-related pathologies, including bone loss. However, the local versus systemic roles of SnCs in mediating tissue dysfunction remain unclear. Thus, we developed a mouse model (p16-LOX-ATTAC) that allowed for inducible SnC elimination (senolysis) in a cell-specific manner and compared the effects of local versus systemic senolysis during aging using bone as a prototype tissue. Specific removal of Sn osteocytes prevented age-related bone loss at the spine, but not the femur, by improving bone formation without affecting osteoclasts or marrow adipocytes. By contrast, systemic senolysis prevented bone loss at the spine and femur and not only improved bone formation, but also reduced osteoclast and marrow adipocyte numbers. Transplantation of SnCs into the peritoneal cavity of young mice caused bone loss and also induced senescence in distant host osteocytes. Collectively, our findings provide proof-of-concept evidence that local senolysis has health benefits in the context of aging, but, importantly, that local senolysis only partially replicates the benefits of systemic senolysis. Furthermore, we establish that SnCs, through their senescence-associated secretory phenotype (SASP), lead to senescence in distant cells. Therefore, our study indicates that optimizing senolytic drugs may require systemic instead of local SnC targeting to extend healthy aging.


Assuntos
Envelhecimento , Senescência Celular , Camundongos , Animais , Senescência Celular/genética , Osso e Ossos , Osteoclastos , Osteócitos
12.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36711531

RESUMO

Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we applied mass cytometry by time-of-flight (CyTOF) using carefully validated antibodies to analyze senescent cells at single-cell resolution. We used multiple criteria to identify senescent mesenchymal cells that were growth arrested and resistant to apoptosis (p16+/Ki67-/BCL-2+; "p16KB" cells). These cells were highly enriched for senescence-associated secretory phenotype (SASP) and DNA damage markers and were strongly associated with age. p16KB cell percentages were also increased in CD24+ osteolineage cells, which exhibited an inflammatory SASP in aged mice and were robustly cleared by both genetic and pharmacologic senolytic therapies. Following isolation, CD24+ skeletal cells exhibited growth arrest, SA-ßgal positivity, and impaired osteogenesis in vitro . These studies thus provide a new approach using multiplexed protein profiling by CyTOF to define senescent mesenchymal cells in vivo and identify a highly inflammatory, senescent CD24+ osteolineage population cleared by senolytics.

13.
Alzheimers Dement ; 19(6): 2317-2331, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36464806

RESUMO

INTRODUCTION: Despite increasing evidence of a role of rare genetic variation in the risk of Alzheimer's disease (AD), limited attention has been paid to its contribution to AD-related biomarker traits indicative of AD-relevant pathophysiological processes. METHODS: We performed whole-exome gene-based rare-variant association studies (RVASs) of 17 AD-related traits on whole-exome sequencing (WES) data generated in the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study (n = 450) and whole-genome sequencing (WGS) data from ADNI (n = 808). RESULTS: Mutation screening revealed a novel probably pathogenic mutation (PSEN1 p.Leu232Phe). Gene-based RVAS revealed the exome-wide significant contribution of rare coding variation in RBKS and OR7A10 to cognitive performance and protection against left hippocampal atrophy, respectively. DISCUSSION: The identification of these novel gene-trait associations offers new perspectives into the role of rare coding variation in the distinct pathophysiological processes culminating in AD, which may lead to identification of novel therapeutic and diagnostic targets.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Exoma/genética , Estudos de Associação Genética , Fenótipo , Biomarcadores
14.
Neurosci Biobehav Rev ; 143: 104927, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36367493

RESUMO

Clinical and genomic studies have shown an overlap between neuropsychiatric disorders and insulin resistance (IR)-related somatic conditions, including obesity, type 2 diabetes, and cardiovascular diseases. Impaired cognition is often observed among neuropsychiatric disorders, where multiple cognitive domains may be affected. In this review, we aimed to summarise previous evidence on the relationship between IR-related diseases/traits and cognitive performance in the large UK Biobank study cohort. Electronic searches were conducted on PubMed, Scopus, and Web of Science until April 2022. Eighteen articles met the inclusion criteria and were qualitatively reviewed. Overall, there is substantial evidence for an association between IR-related cardio-metabolic diseases/traits and worse performance on various cognitive domains, which is largely independent of possible confoundings. The most consistent findings referred to IR-related associations with poorer verbal and numerical reasoning ability, as well as slower processing speed. The observed associations might be mediated by alterations in immune-inflammation, brain integrity/connectivity, and/or comorbid somatic or psychiatric diseases/traits. Our findings provide impetus for further research into the underlying neurobiology and possible new therapeutic targets.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Bancos de Espécimes Biológicos , Cognição , Reino Unido/epidemiologia
15.
BMC Psychiatry ; 22(1): 573, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028833

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is linked with several neurodegenerative and psychiatric disorders, either as a comorbid condition or as a risk factor. We aimed to expand the evidence by examining associations with a broad range of brain disorders (psychiatric and neurological disorders, excluding late-onset neurodegenerative disorders), while also accounting for the temporal order of T2DM and these brain disorders. METHODS: In a population-based cohort-study of 1,883,198 Danish citizens, born 1955-1984 and followed until end of 2016, we estimated associations between T2DM and 16 brain disorders first diagnosed between childhood and mid-adulthood. We calculated odds ratios (OR) and hazard ratios (HR) with 95% confidence intervals (CI) in temporally ordered analyses (brain disorder diagnosis after T2DM and vice versa), adjusted for sex, age, follow-up, birth year, and parental factors. RESULTS: A total of 67,660 (3.6%) of the study population were identified as T2DM cases after age 30 and by a mean age of 45 years (SD of 8 years). T2DM was associated with most psychiatric disorders. Strongest associations were seen with other (i.e. non-anorectic) eating disorders (OR [95% CI]: 2.64 [2.36-2.94]) and schizophrenia spectrum disorder (2.73 [2.63-2.84]). Among neurological disorders especially inflammatory brain diseases (1.73 [1.57-1.91]) and epilepsy (1.67 [1.60-1.75]) were associated with T2DM. Most associations remained in both directions in the temporally ordered analyses. For most psychiatric disorders, associations were strongest in females. CONCLUSIONS: T2DM was associated with several psychiatric and neurological disorders, and most associations were consistently found for both temporal order of disorders. This suggests a shared etiology of T2DM and those brain disorders. This study can form the starting point for studies directed at further elucidating potential causal links between disorders and shared biological mechanisms.


Assuntos
Diabetes Mellitus Tipo 2 , Epilepsia , Adulto , Criança , Estudos de Coortes , Dinamarca , Feminino , Humanos , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Fatores de Risco
16.
Gene ; 835: 146642, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35700807

RESUMO

MicroRNAs (miRNAs) are promising tools as biomarkers and therapeutic agents in various chronic diseases such as osteoporosis, cancers, type I and II diabetes, and cardiovascular diseases. Considering the rising interest in the regulatory role of miRNAs in bone metabolism, aging, and cellular senescence, accurate normalization of qPCR-based miRNA expression data using an optimal endogenous control becomes crucial. We used a systematic approach to select candidate endogenous control miRNAs that exhibit high stability with aging from our miRNA sequence data and literature search. Validation of miRNA expression was performed using qPCR and their comprehensive stability was assessed using the RefFinder tool which is based on four statistical algorithms: GeNorm, NormFinder, BestKeeper, and comparative delta CT. The selected endogenous control was then validated for its stability in mice and human bone tissues, and in bone marrow stromal cells (BMSCs) following induction of senescence and senolytic treatment. Finally, the utility of selected endogenous control versus U6 was tested by using each as a normalizer to measure the expression of miR-34a, a miRNA known to increase with age and senescence. Our results show that Let-7f did not change across the groups with aging, senescence or senolytic treatment, and was the most stable miRNA, whereas U6 was the least stable. Moreover, using Let-7f as a normalizer resulted in significantly increased expression of miR-34a with aging and senescence and decreased expression following senolytic treatment. However, the expression pattern for miR-34a reversed for each of these conditions when U6 was used as a normalizer. We show that optimal endogenous control miRNAs, such as Let-7f, are essential for accurate normalization of miRNA expression data to increase the reliability of results and prevent misinterpretation. Moreover, we present a systematic strategy that is transferrable and can easily be used to identify endogenous control miRNAs in other biological systems and conditions.


Assuntos
MicroRNAs , Animais , Osso e Ossos/metabolismo , Senescência Celular/genética , Perfilação da Expressão Gênica , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Reprodutibilidade dos Testes , Senoterapia
17.
Alzheimers Dement ; 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35698882

RESUMO

BACKGROUND: Suspected non-Alzheimer's disease pathophysiology (SNAP) is a biomarker concept that encompasses individuals with neuronal injury but without amyloidosis. We aim to investigate the pathophysiology of SNAP, defined as abnormal tau without amyloidosis, in individuals with mild cognitive impairment (MCI) by cerebrospinal fluid (CSF) proteomics. METHODS: Individuals were classified based on CSF amyloid beta (Aß)1-42 (A) and phosphorylated tau (T), as cognitively normal A-T- (CN), MCI A-T+ (MCI-SNAP), and MCI A+T+ (MCI-AD). Proteomics analyses, Gene Ontology (GO), brain cell expression, and gene expression analyses in brain regions of interest were performed. RESULTS: A total of 96 proteins were decreased in MCI-SNAP compared to CN and MCI-AD. These proteins were enriched for extracellular matrix (ECM), hemostasis, immune system, protein processing/degradation, lipids, and synapse. Fifty-one percent were enriched for expression in the choroid plexus. CONCLUSION: The pathophysiology of MCI-SNAP (A-T+) is distinct from that of MCI-AD. Our findings highlight the need for a different treatment in MCI-SNAP compared to MCI-AD.

18.
Alzheimers Dement (Amst) ; 14(1): e12286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571963

RESUMO

Introduction: It is important to understand which biological processes change with aging, and how such changes are associated with increased Alzheimer's disease (AD) risk. We studied how cerebrospinal fluid (CSF) proteomics changed with age and tested if associations depended on amyloid status, sex, and apolipoprotein E Ɛ4 genotype. Methods: We included 277 cognitively intact individuals aged 46 to 89 years from Alzheimer's Disease Neuroimaging Initiative, European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery, and Metabolic Syndrome in Men. In total, 1149 proteins were measured with liquid chromatography mass spectrometry with multiple reaction monitoring/Rules-Based Medicine, tandem mass tag mass spectrometry, and SOMAscan. We tested associations between age and protein levels in linear models and tested enrichment for Reactome pathways. Results: Levels of 252 proteins increased with age independently of amyloid status. These proteins were associated with immune and signaling processes. Levels of 21 proteins decreased with older age exclusively in amyloid abnormal participants and these were enriched for extracellular matrix organization. Discussion: We found amyloid-independent and -dependent CSF proteome changes with older age, perhaps representing physiological aging and early AD pathology.

20.
Front Aging Neurosci ; 14: 840651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386118

RESUMO

Alzheimer's disease (AD) is the most frequent neurodegenerative disease with an increasing prevalence in industrialized, aging populations. AD susceptibility has an established genetic basis which has been the focus of a large number of genome-wide association studies (GWAS) published over the last decade. Most of these GWAS used dichotomized clinical diagnostic status, i.e., case vs. control classification, as outcome phenotypes, without the use of biomarkers. An alternative and potentially more powerful study design is afforded by using quantitative AD-related phenotypes as GWAS outcome traits, an analysis paradigm that we followed in this work. Specifically, we utilized genotype and phenotype data from n = 931 individuals collected under the auspices of the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study to perform a total of 19 separate GWAS analyses. As outcomes we used five magnetic resonance imaging (MRI) traits and seven cognitive performance traits. For the latter, longitudinal data from at least two timepoints were available in addition to cross-sectional assessments at baseline. Our GWAS analyses revealed several genome-wide significant associations for the neuropsychological performance measures, in particular those assayed longitudinally. Among the most noteworthy signals were associations in or near EHBP1 (EH domain binding protein 1; on chromosome 2p15) and CEP112 (centrosomal protein 112; 17q24.1) with delayed recall as well as SMOC2 (SPARC related modular calcium binding 2; 6p27) with immediate recall in a memory performance test. On the X chromosome, which is often excluded in other GWAS, we identified a genome-wide significant signal near IL1RAPL1 (interleukin 1 receptor accessory protein like 1; Xp21.3). While polygenic score (PGS) analyses showed the expected strong associations with SNPs highlighted in relevant previous GWAS on hippocampal volume and cognitive function, they did not show noteworthy associations with recent AD risk GWAS findings. In summary, our study highlights the power of using quantitative endophenotypes as outcome traits in AD-related GWAS analyses and nominates several new loci not previously implicated in cognitive decline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA