Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 111(35): 8635-41, 2007 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-17691759

RESUMO

We report experimental results on the low-temperature uptake of HCl on H(2)O ice (ice). HCl was deposited on the surface at greater than monolayer amounts at 85 K, and the ice substrate was heated. The temperature dependence of the HCl vapor pressure from this phase was measured from 110 to 150 K, with the nucleation of a bulk hydrate phase observed at 150 K. Measurements were conducted in a closed system by simultaneous application of gas phase mass spectrometry and surface spectroscopy to characterize vapor/solid equilibrium and the nucleation of bulk hydrate phases. Combining the nucleation data reported here with data we reported previously (180 to 200 K) and data from two other laboratories (165 and 170 K), the thermodynamic boundaries for the nucleation of both the metastable bulk solution and bulk hydrate phases subsequent to monolayer adsorption of HCl have been determined. The nucleation of the metastable bulk solution phase occurs promptly at monolayer coverage at the ice/liquid coexistence boundary on the binary bulk phase diagram. The nucleation of the bulk hexahydrate occurs from this metastable solution along a locus of points defining a state of constant solution free energy. This measured free energy is -51.2 +/- 0.9 kJ/mol. Finally, the temperature dependence of the HCl vapor pressure from the low-temperature phase is reported here for the first time and is consistent with that of the metastable solution predicted by this thermodynamic model of uptake, extending the range of validity of this model of adsorption followed by bulk solution and hydrate nucleation to a lower bound in temperature of 110 K.

2.
J Phys Chem B ; 110(39): 19487-90, 2006 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17004809

RESUMO

Competition and oxidation of fatty acids spread at the air/water interface were investigated using surface-specific, broad-bandwidth, sum frequency generation spectroscopy. At the air/water interface, a monolayer of oleic acid replaced a monolayer of deuterated palmitic acid at equilibrium spreading pressure. Subsequent oxidation of the oleic acid monolayer with ozone resulted in products more water soluble than the palmitic acid; therefore, the palmitic acid monolayer reformed at the surface. Results indicate that the surfactants on the surface of fat-coated tropospheric aerosols will only possess oxidized acyl chains after all less soluble species in the aqueous subphase have been removed through the processes of replacement at the surface and atmospheric oxidation.


Assuntos
Físico-Química/métodos , Ácidos Graxos/química , Ácido Oleico/química , Oxigênio/química , Ozônio/química , Água/química , Aerossóis , Ar , Atmosfera , Modelos Teóricos , Ácidos Oleicos/química , Ácido Palmítico/química , Espectrofotometria , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA