Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Biofabrication ; 16(1)2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37972398

RESUMO

Embryoid bodies (EBs) and self-organizing organoids derived from human pluripotent stem cells (hPSCs) recapitulate tissue development in a dish and hold great promise for disease modeling and drug development. However, current protocols are hampered by cellular stress and apoptosis during cell aggregation, resulting in variability and impaired cell differentiation. Here, we demonstrate that EBs and various organoid models (e.g., brain, gut, kidney) can be optimized by using the small molecule cocktail named CEPT (chroman 1, emricasan, polyamines, trans-ISRIB), a polypharmacological approach that ensures cytoprotection and cell survival. Application of CEPT for just 24 h during cell aggregation has long-lasting consequences affecting morphogenesis, gene expression, cellular differentiation, and organoid function. Various qualification methods confirmed that CEPT treatment enhanced experimental reproducibility and consistently improved EB and organoid fitness as compared to the widely used ROCK inhibitor Y-27632. Collectively, we discovered that stress-free cell aggregation and superior cell survival in the presence of CEPT are critical quality control determinants that establish a robust foundation for bioengineering complex tissue and organ models.


Assuntos
Corpos Embrioides , Células-Tronco Pluripotentes , Humanos , Corpos Embrioides/metabolismo , Reprodutibilidade dos Testes , Organoides , Diferenciação Celular
2.
bioRxiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37961094

RESUMO

Since it was proposed as a potential host-directed antiviral agent for SARS-CoV-2, the antiparasitic drug ivermectin has been investigated thoroughly in clinical trials, which have provided insufficient support for its clinical efficacy. To examine the potential for ivermectin to be repurposed as an antiviral agent, we therefore undertook a series of preclinical studies. Consistent with early reports, ivermectin decreased SARS-CoV-2 viral burden in in vitro models at low micromolar concentrations, five- to ten-fold higher than the reported toxic clinical concentration. At similar concentrations, ivermectin also decreased cell viability and increased biomarkers of cytotoxicity and apoptosis. Further mechanistic and profiling studies revealed that ivermectin nonspecifically perturbs membrane bilayers at the same concentrations where it decreases the SARS-CoV-2 viral burden, resulting in nonspecific modulation of membrane-based targets such as G-protein coupled receptors and ion channels. These results suggest that a primary molecular mechanism for the in vitro antiviral activity of ivermectin may be nonspecific membrane perturbation, indicating that ivermectin is unlikely to be translatable into a safe and effective antiviral agent. These results and experimental workflow provide a useful paradigm for performing preclinical studies on (pandemic-related) drug repurposing candidates.

3.
BMC Bioinformatics ; 24(1): 388, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828466

RESUMO

BACKGROUND: Image segmentation pipelines are commonly used in microscopy to identify cellular compartments like nucleus and cytoplasm, but there are few standards for comparing segmentation accuracy across pipelines. The process of selecting a segmentation assessment pipeline can seem daunting to researchers due to the number and variety of metrics available for evaluating segmentation quality. RESULTS: Here we present automated pipelines to obtain a comprehensive set of 69 metrics to evaluate segmented data and propose a selection methodology for models based on quantitative analysis, dimension reduction or unsupervised classification techniques and informed selection criteria. CONCLUSION: We show that the metrics used here can often be reduced to a small number of metrics that give a more complete understanding of segmentation accuracy, with different groups of metrics providing sensitivity to different types of segmentation error. These tools are delivered as easy to use python libraries, command line tools, Common Workflow Language Tools, and as Web Image Processing Pipeline interactive plugins to ensure a wide range of users can access and use them. We also present how our evaluation methods can be used to observe the changes in segmentations across modern machine learning/deep learning workflows and use cases.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Microscopia , Aprendizado de Máquina , Citoplasma
4.
PLoS One ; 18(8): e0289707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540718

RESUMO

We have previously demonstrated that human liver-type phosphofructokinase 1 (PFK1) recruits other rate-determining enzymes in glucose metabolism to organize multienzyme metabolic assemblies, termed glucosomes, in human cells. However, it has remained largely elusive how glucosomes are reversibly assembled and disassembled to functionally regulate glucose metabolism and thus contribute to human cell biology. We developed a high-content quantitative high-throughput screening (qHTS) assay to identify regulatory mechanisms that control PFK1-mediated glucosome assemblies from stably transfected HeLa Tet-On cells. Initial qHTS with a library of pharmacologically active compounds directed following efforts to kinase-inhibitor enriched collections. Consequently, three compounds that were known to inhibit cyclin-dependent kinase 2, ribosomal protein S6 kinase and Aurora kinase A, respectively, were identified and further validated under high-resolution fluorescence single-cell microscopy. Subsequent knockdown studies using small-hairpin RNAs further confirmed an active role of Aurora kinase A on the formation of PFK1 assemblies in HeLa cells. Importantly, all the identified protein kinases here have been investigated as key signaling nodes of one specific cascade that controls cell cycle progression in human cells. Collectively, our qHTS approaches unravel a cell cycle-associated signaling network that regulates the formation of PFK1-mediated glucosome assembly in human cells.


Assuntos
Aurora Quinase A , Ensaios de Triagem em Larga Escala , Humanos , Células HeLa , Ciclo Celular , Glucose/metabolismo
5.
Stem Cell Reports ; 18(8): 1701-1720, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451260

RESUMO

Human gliogenesis remains poorly understood, and derivation of astrocytes from human pluripotent stem cells (hPSCs) is inefficient and cumbersome. Here, we report controlled glial differentiation from hPSCs that bypasses neurogenesis, which otherwise precedes astrogliogenesis during brain development and in vitro differentiation. hPSCs were first differentiated into radial glial cells (RGCs) resembling resident RGCs of the fetal telencephalon, and modulation of specific cell signaling pathways resulted in direct and stepwise induction of key astroglial markers (NFIA, NFIB, SOX9, CD44, S100B, glial fibrillary acidic protein [GFAP]). Transcriptomic and genome-wide epigenetic mapping and single-cell analysis confirmed RGC-to-astrocyte differentiation, obviating neurogenesis and the gliogenic switch. Detailed molecular and cellular characterization experiments uncovered new mechanisms and markers for human RGCs and astrocytes. In summary, establishment of a glia-exclusive neural lineage progression model serves as a unique serum-free platform of manufacturing large numbers of RGCs and astrocytes for neuroscience, disease modeling (e.g., Alexander disease), and regenerative medicine.


Assuntos
Astrócitos , Células-Tronco Pluripotentes , Humanos , Astrócitos/metabolismo , Células Ependimogliais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Neurogênese , Diferenciação Celular , Proteína Glial Fibrilar Ácida/metabolismo
6.
Cell Syst ; 14(6): 464-481.e7, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37348462

RESUMO

Single-cell RNA sequencing (scRNA-seq) is a powerful technique for describing cell states. Identifying the spatial arrangement of these states in tissues remains challenging, with the existing methods requiring niche methodologies and expertise. Here, we describe segmentation by exogenous perfusion (SEEP), a rapid and integrated method to link surface proximity and environment accessibility to transcriptional identity within three-dimensional (3D) disease models. The method utilizes the steady-state diffusion kinetics of a fluorescent dye to establish a gradient along the radial axis of disease models. Classification of sample layers based on dye accessibility enables dissociated and sorted cells to be characterized by transcriptomic and regional identities. Using SEEP, we analyze spheroid, organoid, and in vivo tumor models of high-grade serous ovarian cancer (HGSOC). The results validate long-standing beliefs about the relationship between cell state and position while revealing new concepts regarding how spatially unique microenvironments influence the identity of individual cells within tumors.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Transcriptoma/genética , Cinética , Organoides , Física
7.
Stem Cell Reports ; 18(4): 1030-1047, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37044067

RESUMO

Development of new non-addictive analgesics requires advanced strategies to differentiate human pluripotent stem cells (hPSCs) into relevant cell types. Following principles of developmental biology and translational applicability, here we developed an efficient stepwise differentiation method for peptidergic and non-peptidergic nociceptors. By modulating specific cell signaling pathways, hPSCs were first converted into SOX10+ neural crest, followed by differentiation into sensory neurons. Detailed characterization, including ultrastructural analysis, confirmed that the hPSC-derived nociceptors displayed cellular and molecular features comparable to native dorsal root ganglion (DRG) neurons, and expressed high-threshold primary sensory neuron markers, transcription factors, neuropeptides, and over 150 ion channels and receptors relevant for pain research and axonal growth/regeneration studies (e.g., TRPV1, NAV1.7, NAV1.8, TAC1, CALCA, GAP43, DPYSL2, NMNAT2). Moreover, after confirming robust functional activities and differential response to noxious stimuli and specific drugs, a robotic cell culture system was employed to produce large quantities of human sensory neurons, which can be used to develop nociceptor-selective analgesics.


Assuntos
Neurônios , Células-Tronco Pluripotentes , Humanos , Neurônios/metabolismo , Nociceptores , Diferenciação Celular , Transdução de Sinais , Gânglios Espinais/metabolismo , Células Receptoras Sensoriais
8.
Nat Methods ; 20(1): 149-161, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36550275

RESUMO

Age-related macular degeneration (AMD), a leading cause of blindness, initiates in the outer-blood-retina-barrier (oBRB) formed by the retinal pigment epithelium (RPE), Bruch's membrane, and choriocapillaris. The mechanisms of AMD initiation and progression remain poorly understood owing to the lack of physiologically relevant human oBRB models. To this end, we engineered a native-like three-dimensional (3D) oBRB tissue (3D-oBRB) by bioprinting endothelial cells, pericytes, and fibroblasts on the basal side of a biodegradable scaffold and establishing an RPE monolayer on top. In this 3D-oBRB model, a fully-polarized RPE monolayer provides barrier resistance, induces choriocapillaris fenestration, and supports the formation of Bruch's-membrane-like structure by inducing changes in gene expression in cells of the choroid. Complement activation in the 3D-oBRB triggers dry AMD phenotypes (including subRPE lipid-rich deposits called drusen and choriocapillaris degeneration), and HIF-α stabilization or STAT3 overactivation induce choriocapillaris neovascularization and type-I wet AMD phenotype. The 3D-oBRB provides a physiologically relevant model to studying RPE-choriocapillaris interactions under healthy and diseased conditions.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Células Endoteliais , Corioide/metabolismo , Retina/metabolismo , Degeneração Macular/metabolismo
9.
Nat Protoc ; 18(1): 58-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261632

RESUMO

Human pluripotent stem cells (hPSCs) are inherently sensitive cells. Single-cell dissociation and the establishment of clonal cell lines have been long-standing challenges. This inefficiency of cell cloning represents a major obstacle for the standardization and streamlining of gene editing in induced pluripotent stem cells for basic and translational research. Here we describe a chemically defined protocol for robust single-cell cloning using microfluidics-based cell sorting in combination with the CEPT small-molecule cocktail. This advanced strategy promotes the viability and cell fitness of self-renewing stem cells. The use of low-pressure microfluidic cell dispensing ensures gentle and rapid dispensing of single cells into 96- and 384-well plates, while the fast-acting CEPT cocktail minimizes cellular stress and maintains cell structure and function immediately after cell dissociation. The protocol also facilitates clone picking and produces genetically stable clonal cell lines from hPSCs in a safe and cost-efficient fashion. Depending on the proliferation rate of the clone derived from a single cell, this protocol can be completed in 7-14 d and requires experience with aseptic cell culture techniques. Altogether, the relative ease, scalability and robustness of this workflow should boost gene editing in hPSCs and leverage a wide range of applications, including cell line development (e.g., reporter and isogenic cell lines), disease modeling and applications in regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Técnicas de Cultura de Células/métodos , Linhagem Celular , Diferenciação Celular , Clonagem Molecular
10.
Commun Biol ; 5(1): 1236, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371462

RESUMO

Three-dimensional (3D) organotypic models that capture native-like physiological features of tissues are being pursued as clinically predictive assays for therapeutics development. A range of these models are being developed to mimic brain morphology, physiology, and pathology of neurological diseases. Biofabrication of 3D gel-based cellular systems is emerging as a versatile technology to produce spatially and cell-type tailored, physiologically complex and native-like tissue models. Here we produce 3D fibrin gel-based functional neural co-culture models with human-iPSC differentiated dopaminergic or glutamatergic neurons and astrocytes. We further introduce genetically encoded fluorescence biosensors and optogenetics activation for real time functional measurements of intracellular calcium and levels of dopamine and glutamate neurotransmitters, in a high-throughput compatible plate format. We use pharmacological perturbations to demonstrate that the drug responses of 3D gel-based neural models are like those expected from in-vivo data, and in some cases, in contrast to those observed in the equivalent 2D neural models.


Assuntos
Técnicas Biossensoriais , Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Neurônios , Técnicas de Cocultura
12.
ACS Chem Biol ; 17(9): 2471-2482, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36049119

RESUMO

Determining a molecule's mechanism of action is paramount during chemical probe development and drug discovery. The cellular thermal shift assay (CETSA) is a valuable tool to confirm target engagement in cells for a small molecule that demonstrates a pharmacological effect. CETSA directly detects biophysical interactions between ligands and protein targets, which can alter a protein's unfolding and aggregation properties in response to thermal challenge. In traditional CETSA experiments, each temperature requires an individual sample, which restricts throughput and requires substantial optimization. To capture the full aggregation profile of a protein from a single sample, we developed a prototype real-time CETSA (RT-CETSA) platform by coupling a real-time PCR instrument with a CCD camera to detect luminescence. A thermally stable Nanoluciferase variant (ThermLuc) was bioengineered to withstand unfolding at temperatures greater than 90 °C and was compatible with monitoring target engagement events when fused to diverse targets. Utilizing well-characterized inhibitors of lactate dehydrogenase alpha, RT-CETSA showed significant correlation with enzymatic, biophysical, and other cell-based assays. A data analysis pipeline was developed to enhance the sensitivity of RT-CETSA to detect on-target binding. RT-CETSA technology advances capabilities of the CETSA method and facilitates the identification of ligand-target engagement in cells, a critical step in assessing the mechanism of action of a small molecule.


Assuntos
Bioensaio , Descoberta de Drogas , Bioensaio/métodos , Descoberta de Drogas/métodos , Lactato Desidrogenases , Ligantes
13.
ACS Chem Biol ; 17(2): 322-330, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35119255

RESUMO

Cellular thermal shift assay (CETSA) is a valuable method to confirm target engagement within a complex cellular environment, by detecting changes in a protein's thermal stability upon ligand binding. The classical CETSA method measures changes in the thermal stability of endogenous proteins using immunoblotting, which is low-throughput and laborious. Reverse-phase protein arrays (RPPAs) have been demonstrated as a detection modality for CETSA; however, the reported procedure requires manual processing steps that limit throughput and preclude screening applications. We developed a high-throughput CETSA using an acoustic RPPA (HT-CETSA-aRPPA) protocol that is compatible with 96- and 384-well microplates from start-to-finish, using low speed centrifugation to remove thermally destabilized proteins. The utility of HT-CETSA-aRPPA for guiding structure-activity relationship studies was demonstrated for inhibitors of lactate dehydrogenase A. Additionally, a collection of kinase inhibitors was screened to identify compounds that engage MEK1, a clinically relevant kinase target.


Assuntos
Ensaios de Triagem em Larga Escala , Proteínas , Acústica , Bioensaio , Ensaios de Triagem em Larga Escala/métodos , Análise Serial de Proteínas
14.
Stem Cell Reports ; 16(12): 3076-3092, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34861164

RESUMO

Efficient translation of human induced pluripotent stem cells (hiPSCs) requires scalable cell manufacturing strategies for optimal self-renewal and functional differentiation. Traditional manual cell culture is variable and labor intensive, posing challenges for high-throughput applications. Here, we established a robotic platform and automated all essential steps of hiPSC culture and differentiation under chemically defined conditions. This approach allowed rapid and standardized manufacturing of billions of hiPSCs that can be produced in parallel from up to 90 different patient- and disease-specific cell lines. Moreover, we established automated multi-lineage differentiation and generated functional neurons, cardiomyocytes, and hepatocytes. To validate our approach, we compared robotic and manual cell culture operations and performed comprehensive molecular and cellular characterizations (e.g., single-cell transcriptomics, mass cytometry, metabolism, electrophysiology) to benchmark industrial-scale cell culture operations toward building an integrated platform for efficient cell manufacturing for disease modeling, drug screening, and cell therapy.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Robótica , Automação , Linhagem da Célula , Células Cultivadas , Corpos Embrioides/citologia , Hepatócitos/citologia , Hepatócitos/virologia , Células-Tronco Embrionárias Humanas/citologia , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/virologia , Neurônios/citologia , RNA-Seq , Padrões de Referência , Análise de Célula Única , Infecção por Zika virus/patologia
15.
bioRxiv ; 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32793899

RESUMO

Efficient translation of human induced pluripotent stem cells (hiPSCs) depends on implementing scalable cell manufacturing strategies that ensure optimal self-renewal and functional differentiation. Currently, manual culture of hiPSCs is highly variable and labor-intensive posing significant challenges for high-throughput applications. Here, we established a robotic platform and automated all essential steps of hiPSC culture and differentiation under chemically defined conditions. This streamlined approach allowed rapid and standardized manufacturing of billions of hiPSCs that can be produced in parallel from up to 90 different patient-and disease-specific cell lines. Moreover, we established automated multi-lineage differentiation to generate primary embryonic germ layers and more mature phenotypes such as neurons, cardiomyocytes, and hepatocytes. To validate our approach, we carefully compared robotic and manual cell culture and performed molecular and functional cell characterizations (e.g. bulk culture and single-cell transcriptomics, mass cytometry, metabolism, electrophysiology, Zika virus experiments) in order to benchmark industrial-scale cell culture operations towards building an integrated platform for efficient cell manufacturing for disease modeling, drug screening, and cell therapy. Combining stem cell-based models and non-stop robotic cell culture may become a powerful strategy to increase scientific rigor and productivity, which are particularly important during public health emergencies (e.g. opioid crisis, COVID-19 pandemic).

16.
Sci Rep ; 10(1): 4203, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144367

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common inherited monogenic disorders, characterized by a progressive decline in kidney function due in part to the formation of fluid-filled cysts. While there is one FDA-approved therapy, it is associated with potential adverse effects, and all other clinical interventions are largely supportive. Insights into the cellular pathways underlying ADPKD have revealed striking similarities to cancer. Moreover, several drugs originally developed for cancer have shown to ameliorate cyst formation and disease progression in animal models of ADPKD. These observations prompted us to develop a high-throughput screening platform of cancer drugs in a quest to repurpose them for ADPKD. We screened ~8,000 compounds, including compounds with oncological annotations, as well as FDA-approved drugs, and identified 155 that reduced the viability of Pkd1-null mouse kidney cells with minimal effects on wild-type cells. We found that 109 of these compounds also reduced in vitro cyst growth of Pkd1-null cells cultured in a 3D matrix. Moreover, the result of the cyst assay identified therapeutically relevant compounds, including agents that interfere with tubulin dynamics and reduced cyst growth without affecting cell viability. Because it is known that several ADPKD therapies with promising outcomes in animal models failed to be translated to human disease, our platform also incorporated the evaluation of compounds in a panel of primary ADPKD and normal human kidney (NHK) epithelial cells. Although we observed differences in compound response amongst ADPKD and NHK cell preparation, we identified 18 compounds that preferentially affected the viability of most ADPKD cells with minimal effects on NHK cells. Our study identifies attractive candidates for future efficacy studies in advanced pre-clinical models of ADPKD.


Assuntos
Rim Policístico Autossômico Dominante/metabolismo , Acrilamidas/farmacologia , Aminopiridinas/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos/métodos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Rim/citologia , Rim/metabolismo , Camundongos , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Sci Rep ; 8(1): 11135, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042482

RESUMO

Imaging and subsequent segmentation analysis in three-dimensional (3D) culture models are complicated by the light scattering that occurs when collecting fluorescent signal through multiple cell and extracellular matrix layers. For 3D cell culture models to be usable for drug discovery, effective and efficient imaging and analysis protocols need to be developed that enable high-throughput data acquisition and quantitative analysis of fluorescent signal. Here we report the first high-throughput protocol for optical clearing of spheroids, fluorescent high-content confocal imaging, 3D nuclear segmentation, and post-segmentation analysis. We demonstrate nuclear segmentation in multiple cell types, with accurate identification of fluorescently-labeled subpopulations, and develop a metric to assess the ability of clearing to improve nuclear segmentation deep within the tissue. Ultimately this analysis pipeline allows for previously unattainable segmentation throughput of 3D culture models due to increased sample clarity and optimized batch-processing analysis.


Assuntos
Técnicas de Cultura de Células , Microscopia Confocal/métodos , Imagem Óptica/métodos , Esferoides Celulares/química , Linhagem Celular Tumoral , Difusão Dinâmica da Luz , Humanos
18.
Mol Cell ; 69(5): 866-878.e7, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499138

RESUMO

Double-strand breaks (DSBs) are critical DNA lesions that robustly activate the elaborate DNA damage response (DDR) network. We identified a critical player in DDR fine-tuning: the E3/E4 ubiquitin ligase UBE4A. UBE4A's recruitment to sites of DNA damage is dependent on primary E3 ligases in the DDR and promotes enhancement and sustainment of K48- and K63-linked ubiquitin chains at these sites. This step is required for timely recruitment of the RAP80 and BRCA1 proteins and proper organization of RAP80- and BRCA1-associated protein complexes at DSB sites. This pathway is essential for optimal end resection at DSBs, and its abrogation leads to upregulation of the highly mutagenic alternative end-joining repair at the expense of error-free homologous recombination repair. Our data uncover a critical regulatory level in the DSB response and underscore the importance of fine-tuning the complex DDR network for accurate and balanced execution of DSB repair.


Assuntos
Proteína BRCA1/metabolismo , Proteínas de Transporte/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas Nucleares/metabolismo , Reparo de DNA por Recombinação/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Proteína BRCA1/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA , Células HeLa , Chaperonas de Histonas , Humanos , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
19.
Stem Cell Reports ; 10(3): 693-702, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29478892

RESUMO

Use of hepatocytes derived from induced pluripotent stem cells (i-Heps) is limited by their functional differences in comparison with primary cells. Extracellular niche factors likely play a critical role in bridging this gap. Using image-based characterization (high content analysis; HCA) of freshly isolated hepatocytes from 17 human donors, we devised and validated an algorithm (Hepatocyte Likeness Index; HLI) for comparing the hepatic properties of cells against a physiological gold standard. The HLI was then applied in a targeted screen of extracellular niche factors to identify substrates driving i-Heps closer to the standard. Laminin 411, the top hit, was validated in two additional induced pluripotent stem cell (iPSC) lines, primary tissue, and an in vitro model of α1-antitrypsin deficiency. Cumulatively, these data provide a reference method to control and screen for i-Hep differentiation, identify Laminin 411 as a key niche protein, and underscore the importance of combining substrates, soluble factors, and HCA when developing iPSC applications.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Laminina/metabolismo , Adolescente , Adulto , Diferenciação Celular/fisiologia , Feminino , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , alfa 1-Antitripsina/metabolismo
20.
Cancer Cell ; 31(1): 50-63, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28073004

RESUMO

Given the paucity of druggable mutations in high-risk neuroblastoma (NB), we undertook chromatin-focused small interfering RNA and chemical screens to uncover epigenetic regulators critical for the differentiation block in high-risk NB. High-content Opera imaging identified 53 genes whose loss of expression led to a decrease in NB cell proliferation and 16 also induced differentiation. From these, the secondary chemical screen identified SETD8, the H4K20me1 methyltransferase, as a druggable NB target. Functional studies revealed that SETD8 ablation rescued the pro-apoptotic and cell-cycle arrest functions of p53 by decreasing p53K382me1, leading to activation of the p53 canonical pathway. In pre-clinical xenograft NB models, genetic or pharmacological (UNC0379) SETD8 inhibition conferred a significant survival advantage, providing evidence for SETD8 as a therapeutic target in NB.


Assuntos
Epigênese Genética , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , RNA Interferente Pequeno/genética , Proteína Supressora de Tumor p53/fisiologia , Diferenciação Celular , Proliferação de Células , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/fisiologia , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Quinazolinas/farmacologia , Proteína Supressora de Tumor p53/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA