Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hosp Infect ; 103(1): 78-84, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31199936

RESUMO

BACKGROUND: Sporicidal surface disinfection is recommended to control transmission of Clostridium difficile in healthcare facilities. EN 17126 provides a method to determine the sporicidal activity in suspension and has been approved as a European standard. In addition, a sporicidal surface test has been proposed. AIM: To determine the interlaboratory reproducibility of a test method for evaluating the susceptibility of a C. difficile spore preparation to a biocidal formulation following the 4-field test (EN 16615 methodology). METHODS: Nine laboratories participated. C. difficile NCTC 13366 spores were used. Glutaraldehyde (1% and 6%; 15 min) and peracetic acid (PAA; 0.01% and 0.04%; 15 min) were used to determine the spores' susceptibility in suspension in triplicate. FINDINGS: One-percent glutaraldehyde revealed a mean decimal log10 reduction of 1.03 with variable results in the nine laboratories (0.37-1.49) and a reproducibility of 0.38. The effect of 6% glutaraldehyde was stronger (mean: 2.05; range: 0.96-4.29; reproducibility: 0.86). PAA revealed similar results. An exemplary biocidal formulation based on 5% PAA was used at 0.5% (non-effective concentration) and 4% (effective concentration) to determine the sporicidal efficacy (4-field test) under clean conditions in triplicate with a contact time of 15 min. When used at 0.5% it demonstrated an overall log10 reduction of 2.68 (range: 2.35-3.57) and at 4% of 4.61 (range: 3.82-5.71). The residual contamination on the three primarily uncontaminated test fields was <50 cfu/25 cm2 in one out of nine laboratories (0.5%) and in seven out of nine laboratories (4%). CONCLUSION: The interlaboratory reproducibility seems to be robust.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Desinfetantes/farmacologia , Testes de Sensibilidade Microbiana/métodos , Esporos Bacterianos/efeitos dos fármacos , Glutaral/farmacologia , Variações Dependentes do Observador , Ácido Peracético/farmacologia , Reprodutibilidade dos Testes
3.
J Cell Sci ; 114(Pt 18): 3255-64, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11591814

RESUMO

CDK1 phosphorylates the A-kinase regulatory subunit RIIalpha on threonine 54 (T54) at mitosis, an event proposed to alter the subcellular localization of RIIalpha. Using an RIIalpha-deficient leukemic cell line (Reh) and stably transfected Reh cell clones expressing wild-type RIIalpha or an RIIalpha(T54E) mutant, we show that RIIalpha associates with chromatin-bound A-kinase anchoring protein AKAP95 at mitosis and that this interaction involves phosphorylation of RIIalpha on T54. During interphase, both RIIalpha and RIIalpha(T54E) exhibit a centrosome-Golgi localization, whereas AKAP95 is intranuclear. At mitosis and in a mitotic extract, most RIIalpha, but not RIIalpha(T54E), co-fractionates with chromatin, onto which it associates with AKAP95. This correlates with T54 phosphorylation of RIIalpha. Disrupting AKAP95-RIIalpha anchoring or depleting RIIalpha from the mitotic extract promotes premature chromatin decondensation. In a nuclear reconstitution assay that mimics mitotic nuclear reformation, RIIalpha is threonine dephosphorylated and dissociates from AKAP95 prior to assembly of nuclear membranes. Lastly, the Reh cell line exhibits premature chromatin decondensation in vitro, which can be rescued by addition of wild-type RIIalpha or an RIIalpha(T54D) mutant, but not RIIalpha(T54E, A, L or V) mutants. Our results suggest that CDK1-mediated T54 phosphorylation of RIIalpha constitutes a molecular switch controlling anchoring of RIIalpha to chromatin-bound AKAP95, where the PKA-AKAP95 complex participates in remodeling chromatin during mitosis.


Assuntos
Cromossomos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Treonina/metabolismo , Ciclo Celular/fisiologia , Linhagem Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fosforilação , Mutação Puntual/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo
4.
J Cell Sci ; 114(Pt 18): 3243-54, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11591813

RESUMO

Protein kinase A regulatory subunit RIIalpha is tightly bound to centrosomal structures during interphase through interaction with the A-kinase anchoring protein AKAP450, but dissociates and redistributes from centrosomes at mitosis. The cyclin B-p34(cdc2) kinase (CDK1) has been shown to phosphorylate RIIalpha on T54 and this has been proposed to alter the subcellular localization of RIIalpha. We have made stable transfectants from an RIIalpha-deficient leukemia cell line (Reh) that expresses either wild-type or mutant RIIalpha (RIIalpha(T54E)). When expressed, RIIalpha detaches from centrosomes at mitosis and dissociates from its centrosomal location in purified nucleus-centrosome complexes by incubation with CDK1 in vitro. By contrast, centrosomal RIIalpha(T54E) is not redistributed at mitosis, remains mostly associated with centrosomes during all phases of the cell cycle and cannot be solubilized by CDK1 in vitro. Furthermore, RIIalpha is solubilized from particular cell fractions and changes affinity for AKAP450 in the presence of CDK1. D and V mutations of T54 also reduce affinity for the N-terminal RII-binding domain of AKAP450, whereas small neutral residues do not change affinity detected by surface plasmon resonance. In addition, only RIIalpha(T54E) interacts with AKAP450 in a RIPA-soluble extract from mitotic cells. Finally, microtubule repolymerization from mitotic centrosomes of the RIIalpha(T54E) transfectant is poorer and occurs at a lower frequency than that of RIIalpha transfectants. Our results suggest that T54 phosphorylation of RIIalpha by CDK1 might serve to regulate the centrosomal association of PKA during the cell cycle.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteína Quinase CDC2/metabolismo , Proteínas de Transporte , Centrossomo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas de Ancoragem à Quinase A , Animais , Sítios de Ligação/fisiologia , Linhagem Celular/metabolismo , Centrossomo/química , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/genética , Camundongos , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Microtúbulos/metabolismo , Fosforilação , Mutação Puntual/genética , Testes de Precipitina/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Estrutura Terciária de Proteína/fisiologia , Ratos , Solubilidade , Frações Subcelulares/química , Transfecção
5.
J Mol Biol ; 298(2): 329-39, 2000 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-10764601

RESUMO

Compartmentalization of cAMP-dependent protein kinase (PKA) is in part mediated by specialized protein motifs in the dimerization domain of the regulatory (R)-subunits of PKA that participate in protein-protein interactions with an amphipathic helix region in A-kinase anchoring proteins (AKAPs). In order to develop a molecular understanding of the subcellular distribution and specific functions of PKA isozymes mediated by association with AKAPs, it is of importance to determine the apparent binding constants of the R-subunit-AKAP interactions. Here, we present a novel approach using surface plasmon resonance (SPR) to examine directly the association and dissociation of AKAPs with all four R-subunit isoforms immobilized on a modified cAMP surface with a high level of accuracy. We show that both AKAP79 and S-AKAP84/D-AKAP1 bind RIIalpha very well (apparent K(D) values of 0.5 and 2 nM, respectively). Both proteins also bind RIIbeta quite well, but with three- to fourfold lower affinities than those observed versus RIIalpha. However, only S-AKAP84/D-AKAP1 interacts with RIalpha at a nanomolar affinity (apparent K(D) of 185 nM). In comparison, AKAP95 binds RIIalpha (apparent K(D) of 5.9 nM) with a tenfold higher affinity than RIIbeta and has no detectable binding to RIalpha. Surface competition assays with increasing concentrations of a competitor peptide covering amino acid residues 493 to 515 of the thyroid anchoring protein Ht31, demonstrated that Ht31, but not a proline-substituted peptide, Ht31-P, competed binding of RIIalpha and RIIbeta to all the AKAPs examined (EC(50)-values from 6 to 360 nM). Furthermore, RIalpha interaction with S-AKAP84/D-AKAP1 was competed (EC(50) 355 nM) with the same peptide. Here we report for the first time an approach to determine apparent rate- and equilibria binding constants for the interaction of all PKA isoforms with any AKAP as well as a novel approach for characterizing peptide competitors that disrupt PKA-AKAP anchoring.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ancoragem à Quinase A , Ligação Competitiva , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Ressonância de Plasmônio de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA