Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012308

RESUMO

Inflammatory bowel disease lacks a long-lasting and broadly effective therapy. Here, by taking advantage of the anti-infection and anti-inflammatory properties of natural antibodies against the small-molecule epitope phosphorylcholine (PC), we show in multiple mouse models of colitis that immunization of the animals with self-assembling supramolecular peptide nanofibres bearing PC epitopes induced sustained levels of anti-PC antibodies that were both protective and therapeutic. The strength and type of immune responses elicited by the nanofibres could be controlled through the relative valency of PC epitopes and exogenous T-cell epitopes on the nanofibres and via the addition of the adjuvant CpG. The nanomaterial-assisted induction of the production of therapeutic antibodies may represent a durable therapy for inflammatory bowel disease.

2.
Sci Adv ; 8(47): eabq4120, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417519

RESUMO

Urinary tract infections (UTIs) are a major public health problem affecting millions of individuals each year. Recurrent UTIs are managed by long-term antibiotic use, making the alarming rise of antibiotic resistance a substantial threat to future UTI treatment. Extended antibiotic regimens may also have adverse effects on the microbiome. Here, we report the use of a supramolecular vaccine to provide long-term protection against uropathogenic Escherichia coli, which cause 80% of uncomplicated UTIs. We designed mucus-penetrating peptide-polymer nanofibers to enable sublingual (under the tongue) vaccine delivery and elicit antibody responses systemically and in the urogenital tract. In a mouse model of UTI, we demonstrate equivalent efficacy to high-dose oral antibiotics but with significantly less perturbation of the gut microbiome. We also formulate our vaccine as a rapid-dissolving sublingual tablet that raises response in mice and rabbits. Our approach represents a promising alternative to antibiotics for the treatment and prevention of UTIs.


Assuntos
Infecções por Escherichia coli , Nanofibras , Infecções Urinárias , Vacinas , Camundongos , Coelhos , Animais , Infecções por Escherichia coli/prevenção & controle , Infecções Urinárias/prevenção & controle , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
3.
Sci Rep ; 11(1): 14494, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262096

RESUMO

A major challenge in developing an effective vaccine against HIV-1 is the genetic diversity of its viral envelope. Because of the broad range of sequences exhibited by HIV-1 strains, protective antibodies must be able to bind and neutralize a widely mutated viral envelope protein. No vaccine has yet been designed which induces broadly neutralizing or protective immune responses against HIV in humans. Nanomaterial-based vaccines have shown the ability to generate antibody and cellular immune responses of increased breadth and neutralization potency. Thus, we have developed supramolecular nanofiber-based immunogens bearing the HIV gp120 envelope glycoprotein. These immunogens generated antibody responses that had increased magnitude and binding breadth compared to soluble gp120. By varying gp120 density on nanofibers, we determined that increased antigen valency was associated with increased antibody magnitude and germinal center responses. This study presents a proof-of-concept for a nanofiber vaccine platform generating broad, high binding antibody responses against the HIV-1 envelope glycoprotein.


Assuntos
Anticorpos Anti-HIV/metabolismo , Antígenos HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Nanofibras/química , Animais , Feminino , Centro Germinativo/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Vacinas contra o Vírus do Herpes Simples/imunologia , Imunoglobulina G/sangue , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/imunologia
4.
Biomaterials ; 273: 120825, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33901731

RESUMO

Biomaterials capable of inducing immune responses with minimal associated inflammation are of interest in applications ranging from tissue repair to vaccines. Here we report the design of self-assembling randomized polypeptide nanomaterials inspired by glatiramoids, an immunomodulatory class of linear random copolymers. We hypothesized that peptide self-assemblies bearing similar randomized polypeptides would similarly raise responses skewed toward Type 2 immunity and TH2 T-cell responses, additionally strengthening responses to co-assembled peptide epitopes in the absence of adjuvant. We developed a method for synthesizing self-assembling peptides terminated with libraries of randomized polypeptides (termed KEYA) with good batch-to-batch reproducibility. These peptides formed regular nanofibers and raised strong antibody responses without adjuvants. KEYA modifications dramatically improved uptake of peptide nanofibers in vitro by antigen presenting cells, and served as strong B-cell and T-cell epitopes in vivo, enhancing immune responses against epitopes relevant to influenza and chronic inflammation while inducing a KEYA-specific Type 2/TH2/IL-4 phenotype. KEYA modifications also increased IL-4 production by T cells, extended the residence time of nanofibers, induced no measurable swelling in footpad injections, and decreased overall T cell expansion compared to unmodified nanofibers, further suggesting a TH2 T-cell response with minimal inflammation. Collectively, this work introduces a biomaterial capable of raising strong Type 2/TH2/IL-4 immune responses, with potential applications ranging from vaccination to tissue repair.


Assuntos
Nanofibras , Peptídeos , Adjuvantes Imunológicos , Formação de Anticorpos , Reprodutibilidade dos Testes
5.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876753

RESUMO

Complement protein C3dg, a key linkage between innate and adaptive immunity, is capable of stimulating both humoral and cell-mediated immune responses, leading to considerable interest in its use as a molecular adjuvant. However, the potential of C3dg as an adjuvant is limited without ways of controllably assembling multiple copies of it into vaccine platforms. Here, we report a strategy to assemble C3dg into supramolecular nanofibers with excellent compositional control, using ß-tail fusion tags. These assemblies were investigated as therapeutic active immunotherapies, which may offer advantages over existing biologics, particularly toward chronic inflammatory diseases. Supramolecular assemblies based on the Q11 peptide system containing ß-tail-tagged C3dg, B cell epitopes from TNF, and the universal T cell epitope PADRE raised strong antibody responses against both TNF and C3dg, and prophylactic immunization with these materials significantly improved protection in a lethal TNF-mediated inflammation model. Additionally, in a murine model of psoriasis induced by imiquimod, the C3dg-adjuvanted nanofiber vaccine performed as well as anti-TNF monoclonal antibodies. Nanofibers containing only ß-tail-C3dg and lacking the TNF B cell epitope also showed improvements in both models, suggesting that supramolecular C3dg, by itself, played an important therapeutic role. We observed that immunization with ß-tail-C3dg caused the expansion of an autoreactive C3dg-specific T cell population, which may act to dampen the immune response, preventing excessive inflammation. These findings indicate that molecular assemblies displaying C3dg warrant further development as active immunotherapies.


Assuntos
Complemento C3d/imunologia , Nanofibras/química , Psoríase/prevenção & controle , Vacinas/imunologia , Adjuvantes Imunológicos/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Linfócitos B/imunologia , Células Cultivadas , Epitopos/química , Epitopos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/imunologia , Vacinas/química
6.
Adv Mater ; 32(39): e2003310, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32820582

RESUMO

Peptide nanofibers are useful for many biological applications, including immunotherapy, tissue engineering, and drug delivery. The robust lengthwise assembly of these peptides into nanofibers is typically difficult to control, resulting in polydisperse fiber lengths and an incomplete understanding of how nanofiber length affects biological responses. Here, rationally designed capping peptides control the length of helical peptide nanofibers with unique precision. These designed peptides bind the tips of elongated nanofibers to shorten and narrow their length distributions. Demonstrating their use as immunotherapies, capped nanofibers are preferentially cross-presented by dendritic cells compared to uncapped nanofibers. Due to increased cross-presentation, these capped nanofibers trigger stronger CD8+ T-cell responses in mice than uncapped nanofibers. This strategy illustrates a means for controlling the length of supramolecular peptide nanofibers to modulate their immunogenicity in the context of immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Nanofibras/química , Peptídeos/química , Peptídeos/farmacologia , Animais , Linfócitos T CD8-Positivos/citologia , Camundongos , Conformação Proteica em alfa-Hélice
7.
Adv Drug Deliv Rev ; 114: 3-18, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28455189

RESUMO

Biomaterials employed to raise therapeutic immune responses have become a complex and active field. Historically, vaccines have been developed primarily to fight infectious diseases, but recent years have seen the development of immunologically active biomaterials towards an expanding list of non-infectious diseases and conditions including inflammation, autoimmunity, wounds, cancer, and others. This review structures its discussion of these approaches around a progression from single-target strategies to those that engage increasingly complex and multifactorial immune responses. First, the targeting of specific individual cytokines is discussed, both in terms of delivering the cytokines or blocking agents, and in terms of active immunotherapies that raise neutralizing immune responses against such single cytokine targets. Next, non-biological complex drugs such as randomized polyamino acid copolymers are discussed in terms of their ability to raise multiple different therapeutic immune responses, particularly in the context of autoimmunity. Last, biologically derived matrices and materials are discussed in terms of their ability to raise complex immune responses in the context of tissue repair. Collectively, these examples reflect the tremendous diversity of existing approaches and the breadth of opportunities that remain for generating therapeutic immune responses using biomaterials.


Assuntos
Autoimunidade/efeitos dos fármacos , Materiais Biocompatíveis/uso terapêutico , Citocinas/antagonistas & inibidores , Inflamação/tratamento farmacológico , Inflamação/imunologia , Vacinas/imunologia , Animais , Autoimunidade/imunologia , Citocinas/imunologia , Humanos , Cicatrização/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA