Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Water Res ; 216: 118328, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364354

RESUMO

Legionella pneumophila is a natural inhabitant of water systems. From there, it can be transmitted to humans by aerosolization resulting in severe pneumonia. Most large outbreaks are caused by cooling towers colonized with L. pneumophila. The resident microbiota of the cooling tower is a key determinant for the colonization and growth of L. pneumophila. In our preceding study, the genus Pseudomonas correlated negatively with the presence of L. pneumophila in cooling towers, but it was not clear which species was responsible. Therefore, we identified the Pseudomonas species inhabiting 14 cooling towers using a Pseudomonas-specific 16S rRNA amplicon sequencing strategy. We found that cooling towers that are free of L. pneumophila contained a high relative abundance of members from the Pseudomonas alcaliphila/oleovorans phylogenetic cluster. P. alcaliphila JCM 10630 inhibited the growth of L. pneumophila on agar plates. Analysis of the P. alcaliphila genome revealed the presence of a gene cluster predicted to produce toxoflavin. L. pneumophila growth was inhibited by pure toxoflavin and by extracts from P. alcaliphila culture found to contain toxoflavin by liquid chromatography coupled with mass spectrometry. In addition, toxoflavin inhibits the growth of Vermameoba vermiformis, a host cell of L. pneumophila. Our study indicates that P. alcaliphila may be important to restrict growth of L. pneumophila in water systems through the production of toxoflavin. A sufficiently high concentration of toxoflavin is likely not achieved in the bulk water but might have a local inhibitory effect such as near or in biofilms.


Assuntos
Legionella pneumophila , Legionella , Humanos , Legionella/genética , Legionella pneumophila/genética , Filogenia , Pseudomonas/genética , Pirimidinonas , RNA Ribossômico 16S/genética , Triazinas , Água , Microbiologia da Água
3.
Afr J Lab Med ; 11(1): 1570, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402201

RESUMO

Laboratory systems have been largely neglected on the margins of health systems in Africa. However, since the 2000s, many African countries have benefited from massive investments to strengthen laboratory capacities through projects fighting priority diseases (HIV/AIDS, tuberculosis, malaria). This review examined the laboratory capacities of the Economic Community of Central African States (ECCAS). Online research using specific terms was carried out. Studies published between 2000 and 2021 on the role of the laboratory in disease and antimicrobial resistance surveillance in the 11 ECCAS countries were considered. The number of human and animal health laboratories meeting international standards was very low in the sub-region. There were only seven International Organization for Standardization (ISO) 15189-accredited human health laboratories, with five in Cameroon and two in Rwanda. There were five high biosafety level (BSL) laboratories (one BSL3 laboratory each in Cameroon, the Central African Republic, Democratic Republic of Congo and the Republic of Congo, and one BSL4 laboratory in Gabon) and three ISO 17025-accredited laboratories in the ECCAS sub-region. Only six countries currently have whole-genome sequencing devices, which is insufficient for a sub-region as large and populous as ECCAS. Yet, a plethora of pathogens, particularly haemorrhagic viruses, are endemic in these countries. The need for laboratory capacity strengthening following a One Health approach is imperative. Since emerging and re-emerging zoonotic infectious diseases are projected to triple in frequency over the next 50 years and given the inextricable link between human and animal health, actors in the two health sectors must collaborate to preserve world health.

4.
J Glob Antimicrob Resist ; 19: 222-227, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31100501

RESUMO

OBJECTIVES: This study investigated the prevalence of Escherichia coli (E. coli) colistin resistance and mcr-1 and mcr-2 genes among extended-spectrum ß-lactamase (ESBL)/AmpC-producing E. coli isolates recovered from chicken feces in Canada (Quebec), Senegal and Vietnam, and evaluated the susceptibility pattern of the colistin-resistant E. coli isolates to other clinically relevant antimicrobials. METHODS: A total of 327 potential ESBL/AmpC-producing E. coli isolates from chicken farms in Canada (Quebec), Senegal and Vietnam were analysed for colistin susceptibility by broth microdilution method and for the presence of mcr (1-2) genes by PCR. The pmrA and pmrB genes of colistin-resistant E. coli isolates, in the absence of mcr (1-2) genes, were sequenced. Antimicrobial resistance phenotypes of colistin-resistant E. coli isolates were determined by disk diffusion. RESULTS: None of the 108 potential ESBL/AmpC-producing E. coli isolates from seven farms in Canada were colistin-resistant or possessed mcr-1 or mcr-2 gene. A low prevalence of 2.2% of colistin resistance was observed in 93 Senegalese isolates from the 15 sampled farms, although neither mcr-1 nor mcr-2 gene was found. A prevalence of 8.7% of colistin resistance was observed among 126 Vietnamese isolates from two of the four sampled farms. The mcr-1 gene was detected in 85% of the 13 phenotypically colistin-resistant isolates. Moreover, all colistin-resistant isolates presented a multidrug-resistant phenotype. CONCLUSIONS: The co-existence of the mcr-1 and ESBL/AmpC genes and the very high level of multiple drug resistance in all colistin-resistant E. coli isolates obtained from sampled chicken farms in Vietnam is a major concern.


Assuntos
Proteínas de Bactérias/genética , Colistina/farmacologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Doenças das Aves Domésticas/microbiologia , beta-Lactamases/genética , Animais , Antibacterianos/farmacologia , Galinhas/microbiologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/enzimologia , Fazendas , Fezes/microbiologia , Proteínas de Membrana/genética , Testes de Sensibilidade Microbiana , Prevalência , Quebeque , Senegal , Vietnã
5.
Microb Drug Resist ; 25(7): 1111-1121, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31038391

RESUMO

Antimicrobial resistance (AMR) is a global health issue, particularly when it affects critically important antimicrobials such as third-generation cephalosporins (3GC). The objective of this study was to characterize Escherichia coli isolates from healthy chickens in Québec in farms where ceftiofur has been administered to chickens in ovo over a long period with regard to their AMR, multidrug resistance (MDR), potential virulence, clonality, and possession of plasmids of the incompatibility groups carrying extended-spectrum beta-lactamases (ESBLs)/AmpC genes. More than 62% of indicator isolates were MDR with resistance observed for each of the nine classes of antimicrobials tested by disk diffusion. 3GC resistance was encoded by the blaCMY-2 gene (26.7% in indicator isolates), whereas blaCTX-M was only detected in isolates selected after supplementation with ceftriaxone (3 blaCTX-M-1 isolates). Examination of blaCMY-2-positive isolates by pulsed-field gel electrophoresis showed clustering of isolates originating from different floors of the livestock building within farms. The blaCMY-2 gene was carried on replicon plasmids FIB, I1, K/B, and B/O, whereas blaCTX-M-1 gene was located on I1 as demonstrated by transformation experiments; some of these plasmids cotransferred nonsusceptibility against tetracycline or sulfonamides. In addition, six isolates, of which three were AmpC-producers, were defined as potential human extraintestinal pathogenic E. coli. In summary, this study showed that ESBLs/AmpC-producing E. coli isolates from apparently healthy chickens in Québec, Canada predominantly possess blaCMY-2 rather than blaCTX-M maybe because of the in ovo use of ceftiofur to prevent omphalitis and may be spread through clones or plasmids, and that some of these isolates could be capable of infecting humans.


Assuntos
Antibacterianos/farmacologia , Galinhas/microbiologia , Farmacorresistência Bacteriana/genética , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Animais , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Plasmídeos/genética , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologia , Quebeque , Virulência/genética , beta-Lactamases/genética
6.
BMC Vet Res ; 15(1): 106, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947723

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) in food-producing animals is a global public health issue. This study investigated AMR and virulence profiles of E. coli isolated from healthy chickens in Vietnam. E. coli were isolated from fecal samples collected in five chicken farms located in the provinces of Hoa Binh, Thai Nguyen and Bac Giang in the North of Vietnam. These isolates were examined by disk diffusion for their AMR, PCR for virulence and AMR genes, pulsed-field gel electrophoresis for relatedness between blaCMY-2/blaCTX-M-positive isolates, electroporation for transferability of blaCMY-2 or blaCTX-M genes and sequencing for mutations responsible for ciprofloxacin resistance. RESULTS: Up to 99% of indicator isolates were multidrug resistant. Resistance to third-generation cephalosporins (3GC) was encoded by both blaCTX-M and blaCMY-2 genes; blaCTX-M genes being of genotypes blaCTX-M-1, - 14, - 15, - 17, - 57 and - 87, whereas ciprofloxacin resistance was due to mutations in the gyrA and parC genes. Some isolates originating from farms located in different provinces of Vietnam were found to be closely related, suggesting they may have been disseminated from a same source of contamination. Plasmids may also have played a role in the diffusion of 3GC-resistance as the blaCMY-2 gene was located on plasmids A/C and I1, and the blaCTX-M gene variants were carried by I1, FIB, R and HI1. Plasmids carrying the blaCMY-2/blaCTX-M genes also co-transferred resistance to other antimicrobials. In addition, isolates potentially capable of infecting humans, of which some produced blaCMY-2/blaCTX-M, were identified in this study. CONCLUSIONS: Both clones and plasmids could be involved in the dissemination of 3GC-resistant E. coli within and between chicken farms in Vietnam. These results demonstrate the necessity to monitor AMR and control antimicrobial use in poultry in Vietnam.


Assuntos
Galinhas/microbiologia , Escherichia coli Extraintestinal Patogênica/genética , Plasmídeos/genética , Doenças das Aves Domésticas/microbiologia , beta-Lactamases/genética , Animais , Clonagem Molecular , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão/veterinária , Eletroforese em Gel de Campo Pulsado/veterinária , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Escherichia coli Extraintestinal Patogênica/enzimologia , Escherichia coli Extraintestinal Patogênica/patogenicidade , Fezes/microbiologia , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/genética , Vietnã/epidemiologia , Virulência , Resistência beta-Lactâmica/genética
7.
PLoS One ; 14(3): e0214304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30913237

RESUMO

Escherichia coli is a normal inhabitant of the intestinal microbiota of chickens, a small proportion of which may be avian pathogenic E. coli (APEC) or potential extraintestinal pathogenic E. coli (ExPEC), capable of causing disease in humans. These E. coli may also be resistant to antimicrobials of critical importance in human or veterinary health. This study aims to 1) determine the prevalence of antimicrobial resistance (AMR) and resistance genes, multidrug resistance (MDR), chromosomal mechanisms of quinolone-resistance and virulence profiles of E. coli isolated from healthy chicken farms in the region of Dakar, Senegal, 2) investigate the spread of third-generation cephalosporins (3GC) resistance in E. coli isolated from healthy chicken farms with respect to virulence and resistance genes, serogroups, Pulsed-Field Gel Electrophoresis (PFGE), phylogenetic groups, plasmid types and transferability and 3) determine whether nonsusceptibility against 3GC on farms could be linked to risk factors. More than 68% of isolates from environmental faecal and drinking water samples, carcasses and carcass washes collected on 32 healthy chicken farms were multidrug resistant (MDR), resistance to antimicrobials critical in human health (3GC or ciprofloxacin) being found in all types of samples. Ciprofloxacin resistance was due to mutations in the gyrA and parC genes, 95% of tested farms harboring isolates carrying three mutations, in gyrA (Ser83Ile and Asp87Asn) and parC (Ser80Ile). Nine of the 32 farms (28.1%) demonstrated the presence of one or more 3GC-nonsusceptible indicator isolates but none of the potential risk factors were significantly associated with this presence on farms. Following ceftriaxone enrichment, presumptive extended-spectrum beta-lactamase/AmpC-beta-lactamase (ESBL/AmpC)-producer isolates were found in 17 of the 32 farms. 3GC resistance was mediated by blaCMY-2 or blaCTX-M genes, blaCTX-M being of genotypes blaCTX-M-1, blaCTX-M-8 and for the first time in chickens in Senegal, the genotype blaCTX-M-15. Clonally related ESBL/AmpC-producer isolates were found on different farms. In addition, blaCTX-M genes were identified on replicon plasmids I1 and K/B and blaCMY-2 on K/B, I1 and B/O. These plasmids were found in isolates of different clusters. In addition, 18 isolates, some of which were ESBL/AmpC-producers, were defined as potential human ExPEC. In conclusion, E. coli isolates potentially pathogenic for humans and demonstrating MDR, with resistance expressed against antimicrobials of critical importance in human health were found in healthy chickens in Senegal. Our results suggest that both clonal spreading and horizontal gene transfer play a role in the spread of 3GC-resistance and that chickens in Senegal could be a reservoir for AMR and ExPEC for humans. These results highlight the importance of raising awareness about compliance with biosecurity measures and prudent use of antimicrobials.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Galinhas/microbiologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Animais , Proteínas de Bactérias/genética , DNA Girase/genética , DNA Topoisomerase IV/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Fazendas , Testes de Sensibilidade Microbiana , Mutação , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Prevalência , Fatores de Risco , Senegal/epidemiologia , Virulência/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
8.
Foodborne Pathog Dis ; 15(8): 517-525, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29851365

RESUMO

Avian pathogenic Escherichia coli (APEC), a subset of extraintestinal pathogenic E. coli (ExPEC), are the etiologic agent of avian colibacillosis, one of the main causes of economic losses in the poultry industry. The aim of this study was to characterize E. coli isolated from diseased chickens in Senegal to elucidate their virulence potential and antimicrobial resistance (AMR). A total of 58 isolates, each from a separate farm, were characterized for AMR, virulence, and AMR genes, phylogroup, serogroup, biofilm formation, and pulsed-field gel electrophoresis, and for two isolates, whole-genome sequencing (WGS). Fifty isolates (86.2%) were multidrug resistant. Many AMR genes were detected, including variants of blaCTX-M encoding resistance to third-generation cephalosporins (five isolates [8.6%]). Most fluoroquinolone-nonsusceptible isolates (21/26) were carriers of mutations in gyrA (Ser83Leu, Asp87Asn, and/or Asp87Tyr) and/or parC (Ser80Ile) genes. Forty-nine (84.5%) isolates exhibited at least one of the virulence markers of APEC, among which 23 (39.7%) were defined as potential virulent APEC. In addition, 10 isolates, of which 9 were defined as APEC, carried virulence profiles corresponding to ExPEC. Seven isolates, of which six were classified as ExPEC, belonged to phylo-serogroup F-O25, and following WGS of two of these isolates, were found to belong to the serotype O25:H1 and to the sequence type ST624. Some isolates classified as ExPEC, including F-O25, were found to strongly produce biofilm, suggesting their capability to persist for long time in the environment. F-O25-isolates, although found in different widely separated farms, formed a single cluster that included clones, suggesting that these isolates may have originated from a common source. Taken together, these results suggest that some E. coli involved in chicken colibacillosis in Senegal may pose a human health risk.


Assuntos
Biofilmes/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Fatores de Virulência/genética , Animais , Galinhas/microbiologia , Farmacorresistência Bacteriana , Eletroforese em Gel de Campo Pulsado , Escherichia coli/patogenicidade , Infecções por Escherichia coli/veterinária , Testes de Sensibilidade Microbiana , Doenças das Aves Domésticas/microbiologia , Senegal , Sorotipagem , Virulência , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA