Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(5): e1010566, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126510

RESUMO

Transposable elements constitute nearly half of the mammalian genome and play important roles in genome evolution. While a multitude of both transcriptional and post-transcriptional mechanisms exist to silence transposable elements, control of transposition in vivo remains poorly understood. MOV10, an RNA helicase, is an inhibitor of mobilization of retrotransposons and retroviruses in cell culture assays. Here we report that MOV10 restricts LINE1 retrotransposition in mice. Although MOV10 is broadly expressed, its loss causes only incomplete penetrance of embryonic lethality, and the surviving MOV10-deficient mice are healthy and fertile. Biochemically, MOV10 forms a complex with UPF1, a key component of the nonsense-mediated mRNA decay pathway, and primarily binds to the 3' UTR of somatically expressed transcripts in testis. Consequently, loss of MOV10 results in an altered transcriptome in testis. Analyses using a LINE1 reporter transgene reveal that loss of MOV10 leads to increased LINE1 retrotransposition in somatic and reproductive tissues from both embryos and adult mice. Moreover, the degree of LINE1 retrotransposition inhibition is dependent on the Mov10 gene dosage. Furthermore, MOV10 deficiency reduces reproductive fitness over successive generations. Our findings demonstrate that MOV10 attenuates LINE1 retrotransposition in a dosage-dependent manner in mice.


Assuntos
Elementos de DNA Transponíveis , RNA Helicases , Animais , Masculino , Camundongos , Degradação do RNAm Mediada por Códon sem Sentido , Retroelementos/genética , RNA Helicases/genética , RNA Helicases/metabolismo
2.
Mol Cell ; 71(5): 651-652, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193093

RESUMO

In this issue of Molecular Cell, Gainetdinov et al. (2018) show that PIWI proteins direct both piRNA biogenesis and piRNA function in most animals.


Assuntos
Proteínas , Animais , RNA Interferente Pequeno
3.
Methods Mol Biol ; 1680: 87-100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29030843

RESUMO

HITS-CLIP (High-Throughput Sequencing after in vivo Crosslinking and Immunoprecipitation, CLIP-Seq) libraries contain fragments of the RNA sequences bound in vivo by an RNA binding protein (RBP). Such fragments, especially if they represent RNA duplexes bound in vivo by the RBP, can occasionally be ligated together to form chimeric CLIP tags. Chimeric CLIP tags from Argonaute CLIP libraries can provide the exact base pairing profiles of small RNAs with their target RNA sequences, thus solving a critical problem in the field of post-transcriptional regulation. We recently reported an analysis of chimeric reads from the Drosophila Piwi protein Aubergine, which revealed a novel mechanism for mRNA entrapment within germ RNP granules. We term this novel approach chimeric CLIP (cCLIP) and present here the main steps that a researcher can take after the acquisition of the deep sequencing data, for the identification of candidate chimeric reads in Piwi CLIP libraries. Extending the scope beyond small-RNA binding proteins, we believe that cCLIP can be utilized to elucidate the in vivo functions of RNA-binding proteins in general, and especially those that modulate RNA secondary structures. We, therefore, also describe aspects of the generalized chimeric read identification problem, which can find use in the analysis of the CLIP libraries of any RNA-binding protein.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Imunoprecipitação , Análise de Sequência de RNA , Proteínas Argonautas , Pareamento de Bases , Biologia Computacional/métodos , Proteínas de Drosophila , Perfilação da Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoprecipitação/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Software
4.
Nat Immunol ; 18(12): 1353-1360, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29058702

RESUMO

The polarization of leukocytes toward chemoattractants is essential for the directed migration (chemotaxis) of leukocytes. How leukocytes acquire polarity after encountering chemical gradients is not well understood. We found here that leukocyte polarity was generated by TIPE2 (TNFAIP8L2), a transfer protein for phosphoinositide second messengers. TIPE2 functioned as a local enhancer of phosphoinositide-dependent signaling and cytoskeleton remodeling, which promoted leading-edge formation. Conversely, TIPE2 acted as an inhibitor of the GTPase Rac, which promoted trailing-edge polarization. Consequently, TIPE2-deficient leukocytes were defective in polarization and chemotaxis, and TIPE2-deficient mice were resistant to leukocyte-mediated neural inflammation. Thus, the leukocyte polarizer is a dual-role phosphoinositide-transfer protein and represents a potential therapeutic target for the treatment of inflammatory diseases.


Assuntos
Quimiotaxia de Leucócito/genética , Encefalomielite Autoimune Experimental/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linfócitos T/imunologia , Animais , Polaridade Celular/genética , Quimiotaxia de Leucócito/fisiologia , Inflamação/genética , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositóis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas rac de Ligação ao GTP/antagonistas & inibidores
5.
Nature ; 531(7594): 390-394, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26950602

RESUMO

The conserved Piwi family of proteins and piwi-interacting RNAs (piRNAs) have a central role in genomic stability, which is inextricably linked to germ-cell formation, by forming Piwi ribonucleoproteins (piRNPs) that silence transposable elements. In Drosophila melanogaster and other animals, primordial germ-cell specification in the developing embryo is driven by maternal messenger RNAs and proteins that assemble into specialized messenger ribonucleoproteins (mRNPs) localized in the germ (pole) plasm at the posterior of the oocyte. Maternal piRNPs, especially those loaded on the Piwi protein Aubergine (Aub), are transmitted to the germ plasm to initiate transposon silencing in the offspring germ line. The transport of mRNAs to the oocyte by midoogenesis is an active, microtubule-dependent process; mRNAs necessary for primordial germ-cell formation are enriched in the germ plasm at late oogenesis via a diffusion and entrapment mechanism, the molecular identity of which remains unknown. Aub is a central component of germ granule RNPs, which house mRNAs in the germ plasm, and interactions between Aub and Tudor are essential for the formation of germ granules. Here we show that Aub-loaded piRNAs use partial base-pairing characteristics of Argonaute RNPs to bind mRNAs randomly in Drosophila, acting as an adhesive trap that captures mRNAs in the germ plasm, in a Tudor-dependent manner. Notably, germ plasm mRNAs in drosophilids are generally longer and more abundant than other mRNAs, suggesting that they provide more target sites for piRNAs to promote their preferential tethering in germ granules. Thus, complexes containing Tudor, Aub piRNPs and mRNAs couple piRNA inheritance with germline specification. Our findings reveal an unexpected function for piRNP complexes in mRNA trapping that may be generally relevant to the function of animal germ granules.


Assuntos
Citoplasma/genética , Citoplasma/metabolismo , Drosophila melanogaster/genética , Oócitos/citologia , Transporte de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Animais , Proteínas Argonautas/metabolismo , Pareamento de Bases , Sítios de Ligação , Elementos de DNA Transponíveis/genética , Difusão , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Feminino , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Oócitos/metabolismo , Oogênese , Fatores de Iniciação de Peptídeos/metabolismo , Interferência de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Transcriptoma/genética
6.
Genes Dev ; 29(6): 617-29, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25762440

RESUMO

Piwi-piRNA (Piwi-interacting RNA) ribonucleoproteins (piRNPs) enforce retrotransposon silencing, a function critical for preserving the genome integrity of germ cells. The molecular functions of most of the factors that have been genetically implicated in primary piRNA biogenesis are still elusive. Here we show that MOV10L1 exhibits 5'-to-3' directional RNA-unwinding activity in vitro and that a point mutation that abolishes this activity causes a failure in primary piRNA biogenesis in vivo. We demonstrate that MOV10L1 selectively binds piRNA precursor transcripts and is essential for the generation of intermediate piRNA processing fragments that are subsequently loaded to Piwi proteins. Multiple analyses suggest an intimate coupling of piRNA precursor processing with elements of local secondary structures such as G quadruplexes. Our results support a model in which MOV10L1 RNA helicase activity promotes unwinding and funneling of the single-stranded piRNA precursor transcripts to the endonuclease that catalyzes the first cleavage step of piRNA processing.


Assuntos
RNA Helicases/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Feminino , Quadruplex G , Masculino , Camundongos , Ligação Proteica , Estrutura Secundária de Proteína , RNA Helicases/química , RNA Helicases/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Interferente Pequeno/biossíntese , Ribonucleoproteínas/metabolismo
7.
Cancer Cell ; 26(4): 465-78, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25242044

RESUMO

More than half of human cancers have aberrantly upregulated phosphoinositide signals; yet how phospholipid signals are controlled during tumorigenesis is not fully understood. We report here that TIPE3 (TNFAIP8L3) is the transfer protein of phosphoinositide second messengers that promote cancer. High-resolution crystal structure of TIPE3 shows a large hydrophobic cavity that is occupied by a phospholipid-like molecule. TIPE3 preferentially captures and shuttles two lipid second messengers, i.e., phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate, and increases their levels in the plasma membrane. Notably, human cancers have markedly upregulated TIPE3 expression. Knocking out TIPE3 diminishes tumorigenesis, whereas enforced TIPE3 expression enhances it in vivo. Thus, the function and metabolism of phosphoinositide second messengers are controlled by a specific transfer protein during tumorigenesis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lipídeos/fisiologia , Neoplasias/fisiopatologia , Sistemas do Segundo Mensageiro , Divisão Celular , Sobrevivência Celular , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/enzimologia , Neoplasias/patologia , Ligação Proteica , Proteínas Quinases/metabolismo , Transdução de Sinais
8.
Biochemistry ; 53(11): 1810-7, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24580115

RESUMO

Comparative in silico analyses of bacterial RNase P enzymes clustered their RNA subunits in type A RNA, found in Escherichia coli, and in type B, found in Bacillus subtilis. Zymomonas mobilis RNase P consists of one protein (Zmo-RnpA) and one type A RNA (RPR) subunit containing the P19 element, present in many RNase P RNAs of any structure class but lacking in the E. coli RNase P RNA. To investigate the putative role of the P19 stem, we constructed a P19 deletion RNA mutant (ΔP19RPR) and performed detailed kinetic analysis of reconstituted enzymes in the presence of the homologous Zmo-RnpA protein or Eco-RnpA protein from E. coli. The deletion of P19 perturbs the monovalent ion requirements. The Mg(2+) requirement for the ΔP19RPR holoenzyme was almost identical to that for the wtRPR holoenzyme at Mg(2+) concentrations of ≤25 mM. Interestingly, enzymes reconstituted with Eco-RnpA protein, relative to those assembled with Zmo-RnpA, exhibited enhanced activity in the presence of ΔP19RPR, suggesting that Eco-RnpA protein can effectively replace its Z. mobilis counterpart. Homologous and heterologous reconstituted enzymes in the presence of ΔP19RPR exhibited differences in their Km values and catalytic efficacies. Overall, the presence of the P19 stem points toward an adaption during the co-evolution of Zmo-RnpA and RPR that is essential for stabilizing the overall structure of the Z. mobilis RNase P. Finally, our results are in line with existing structural data on RNase P enzymes and provide biochemical support for the possible role of appended domains in RNase P RNA subunits.


Assuntos
RNA Bacteriano/química , Ribonuclease P/química , Zymomonas/enzimologia , Zymomonas/genética , Sequência de Aminoácidos/genética , Sequência de Bases , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Dados de Sequência Molecular , RNA Bacteriano/genética , Ribonuclease P/genética
9.
Cell Metab ; 19(1): 135-45, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24374217

RESUMO

Type 2 diabetes mellitus (T2DM) is a complex disease characterized by the inability of the insulin-producing ß cells in the endocrine pancreas to overcome insulin resistance in peripheral tissues. To determine if microRNAs are involved in the pathogenesis of human T2DM, we sequenced the small RNAs of human islets from diabetic and nondiabetic organ donors. We identified a cluster of microRNAs in an imprinted locus on human chromosome 14q32 that is highly and specifically expressed in human ß cells and dramatically downregulated in islets from T2DM organ donors. The downregulation of this locus strongly correlates with hypermethylation of its promoter. Using HITS-CLIP for the essential RISC-component Argonaute, we identified disease-relevant targets of the chromosome 14q32 microRNAs, such as IAPP and TP53INP1, that cause increased ß cell apoptosis upon overexpression in human islets. Our results support a role for microRNAs and their epigenetic control by DNA methylation in the pathogenesis of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Proteínas de Membrana/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Adulto , Sequência de Bases , Proteínas de Ligação ao Cálcio , Cromossomos Humanos Par 14/genética , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica , Impressão Genômica , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
10.
Methods Mol Biol ; 1093: 73-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24178558

RESUMO

Piwi proteins, such as Aubergine in Drosophila and Miwi and Mili in mice, form a major subclade of the Argonaute family, which comprise a distinct class of RNA-binding proteins (RBPs) able to bind small RNAs. Small RNAs can target complementary RNAs. Piwis are essential for the animal germline and bind Piwi-interacting RNAs (piRNAs) to form pi-RiboNucleoProteins (piRNPs). Although many piRNAs target retrotransposons for safeguarding genome integrity of the germ cell, whether piRNAs can target other mRNAs for regulatory purposes is still under investigation. Here we present the technical protocol for "High Throughput Sequencing after in vivo Crosslinking and Immunoprecipitation" (HITS-CLIP, CLIP-Seq), adapted for mouse Piwi proteins Mili and Miwi. We also provide general recommendations for the application of this protocol for different RBPs and also for the bioinformatic analysis of the deep sequencing data.


Assuntos
Proteínas Argonautas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoprecipitação/métodos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação , Análise de Sequência de RNA/métodos , Animais , Clonagem Molecular , Biologia Computacional , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Camundongos , Desnaturação Proteica/efeitos dos fármacos , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/metabolismo , Raios Ultravioleta , Ureia/farmacologia
11.
BMC Genomics ; 14: 264, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23597149

RESUMO

BACKGROUND: Validation of physiologic miRNA targets has been met with significant challenges. We employed HITS-CLIP to identify which miRNAs participate in liver regeneration, and to identify their target mRNAs. RESULTS: miRNA recruitment to the RISC is highly dynamic, changing more than five-fold for several miRNAs. miRNA recruitment to the RISC did not correlate with changes in overall miRNA expression for these dynamically recruited miRNAs, emphasizing the necessity to determine miRNA recruitment to the RISC in order to fully assess the impact of miRNA regulation. We incorporated RNA-seq quantification of total mRNA to identify expression-weighted Ago footprints, and developed a microRNA regulatory element (MRE) prediction algorithm that represents a greater than 20-fold refinement over computational methods alone. These high confidence MREs were used to generate candidate 'competing endogenous RNA' (ceRNA) networks. CONCLUSION: HITS-CLIP analysis provide novel insights into global miRNA:mRNA relationships in the regenerating liver.


Assuntos
Regeneração Hepática/genética , MicroRNAs/genética , RNA Mensageiro/metabolismo , Animais , Ciclo Celular , Redes Reguladoras de Genes , Imunoprecipitação/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Inativação Induzido por RNA/genética
12.
Nat Struct Mol Biol ; 19(8): 773-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22842725

RESUMO

Germ cells implement elaborate mechanisms to protect their genetic material and to regulate gene expression during differentiation. Piwi proteins bind Piwi-interacting RNAs (piRNAs), small germline RNAs whose biogenesis and functions are still largely elusive. We used high-throughput sequencing after cross-linking and immunoprecipitation (HITS-CLIP) coupled with RNA-sequencing (RNA-seq) to characterize the genome-wide target RNA repertoire of Mili (Piwil2) and Miwi (Piwil1), two Piwi proteins expressed in mouse postnatal testis. We report the in vivo pathway of primary piRNA biogenesis and implicate distinct nucleolytic activities that process Piwi-bound precursor transcripts. Our studies indicate that pachytene piRNAs are the end products of RNA processing. HITS-CLIP demonstrated that Miwi binds spermiogenic mRNAs directly, without using piRNAs as guides, and independent biochemical analyses of testis mRNA ribonucleoproteins (mRNPs) established that Miwi functions in the formation of mRNP complexes that stabilize mRNAs essential for spermiogenesis.


Assuntos
Proteínas Argonautas/genética , Proteínas Argonautas/fisiologia , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Espermatogênese/genética , Espermatogênese/fisiologia , Animais , Proteínas Argonautas/deficiência , Sequência de Bases , Regulação da Expressão Gênica , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Imunoprecipitação , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Estabilidade de RNA , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Testículo/metabolismo
13.
Methods Mol Biol ; 725: 281-93, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21528460

RESUMO

Piwi interacting RNAs (piRNAs) are small (∼25 to ∼30 nucleotide) and are expressed in the germline. piRNAs bind to the Piwi subclade of Argonaute proteins and form the core ribonucleoproteins (RNPs) of piRNPs. We describe a method for the massive identification of piRNAs from immunopurified piRNPs. This strategy may also be used for immunopurification and directional sequencing of RNAs from other RNPs that contain small RNAs.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Imunoprecipitação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Masculino , Camundongos , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/isolamento & purificação , Xenopus laevis/genética , Xenopus laevis/metabolismo
14.
Biochemistry ; 49(50): 10714-27, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21087028

RESUMO

Dictyostelium discoideum nuclear RNase P is a ribonucleoprotein complex that displays similarities with its counterparts from higher eukaryotes such as the human enzyme, but at the same time it retains distinctive characteristics. In the present study, we report the molecular cloning and interaction details of DRpp29 and RNase P RNA, two subunits of the RNase P holoenzyme from D. discoideum. Electrophoretic mobility shift assays exhibited that DRpp29 binds specifically to the RNase P RNA subunit, a feature that was further confirmed by the molecular modeling of the DRpp29 structure. Moreover, deletion mutants of DRpp29 were constructed in order to investigate the domains of DRpp29 that contribute to and/or are responsible for the direct interaction with the D. discoideum RNase P RNA. A eukaryotic specific, lysine- and arginine-rich region was revealed, which seems to facilitate the interaction between these two subunits. Furthermore, we tested the ability of wild-type and mutant DRpp29 to form active RNase P enzymatic particles with the Escherichia coli RNase P RNA.


Assuntos
Dictyostelium/enzimologia , RNA Catalítico/metabolismo , Ribonuclease P/química , Ribonuclease P/metabolismo , Northern Blotting , Ensaio de Desvio de Mobilidade Eletroforética , Imunoprecipitação , Mutação , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Catalítico/química , RNA Catalítico/genética , Ribonuclease P/genética
15.
Genes Dev ; 24(18): 1963-6, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20844011

RESUMO

In Drosophila melanogaster and many other metazoans, the specification of germ cells requires cytoplasmic inheritance of maternally synthesized RNA and protein determinants, which are assembled in electron-dense cytoplasmic structures known as germ or polar granules, found at the posterior end of the oocytes. Recent studies have shown that the formation of germ granules is dependent on the interaction of proteins containing tudor domains with the piwi-interacting RNA (piRNA)-binding Piwi proteins, and such interactions are dependent on symmetrically dimethylated arginines (sDMAs) of Piwi proteins. Tudor-Piwi interactions are crucial and are conserved in the germ cells of sexually reproducing animals, including mammals. In the September 1, 2010, issue of Genes & Development, Liu and colleagues (pp. 1876-1881) use a combination of genetics, biochemistry, and crystallography to uncover the molecular and structural details of how Tudor recognizes and binds the sDMAs of the Piwi protein Aubergine.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Animais , Proteínas Argonautas , Sítios de Ligação , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Células Germinativas/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/química , Fatores de Iniciação de Peptídeos/química , Complexo de Inativação Induzido por RNA/metabolismo
16.
Gastroenterology ; 139(5): 1654-64, 1664.e1, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20659473

RESUMO

BACKGROUND & AIMS: Whereas the importance of microRNA (miRNA) for the development of several tissues is well established, its role in the intestine is unknown. We aimed to quantify the complete miRNA expression profile of the mammalian intestinal mucosa and to determine the contribution of miRNAs to intestinal homeostasis using genetic means. METHODS: We determined the miRNA transcriptome of the mouse intestinal mucosa using ultrahigh throughput sequencing. Using high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP), we identified miRNA-messenger RNA target relationships in the jejunum. We employed gene ablation of the obligatory miRNA-processing enzyme Dicer1 to derive mice deficient for all miRNAs in intestinal epithelia. RESULTS: miRNA abundance varies dramatically in the intestinal mucosa, from 1 read per million to 250,000. Of the 453 miRNA families identified, mmu-miR-192 is the most highly expressed in both the small and large intestinal mucosa, and there is a 53% overlap in the top 15 expressed miRNAs between the 2 tissues. The intestinal epithelium of Dicer1(loxP/loxP);Villin-Cre mutant mice is disorganized, with a decrease in goblet cells, a dramatic increase in apoptosis in crypts of both jejunum and colon, and accelerated jejunal cell migration. Furthermore, intestinal barrier function is impaired in Dicer1-deficient mice, resulting in intestinal inflammation with lymphocyte and neutrophil infiltration. Our list of miRNA-messenger RNA targeting relationships in the small intestinal mucosa provides insight into the molecular mechanisms behind the phenotype of Dicer1 mutant mice. CONCLUSIONS: We have identified all intestinal miRNAs and shown using gene ablation of Dicer1 that miRNAs play a vital role in the differentiation and function of the intestinal epithelium.


Assuntos
Diferenciação Celular/genética , RNA Helicases DEAD-box/genética , Endorribonucleases/genética , Regulação da Expressão Gênica no Desenvolvimento , Mucosa Intestinal/patologia , Doenças do Jejuno/genética , MicroRNAs/genética , RNA Mensageiro/genética , Animais , RNA Helicases DEAD-box/metabolismo , Modelos Animais de Doenças , Endorribonucleases/metabolismo , Imunoprecipitação , Mucosa Intestinal/metabolismo , Doenças do Jejuno/enzimologia , Doenças do Jejuno/patologia , Camundongos , Camundongos Mutantes , MicroRNAs/biossíntese , Reação em Cadeia da Polimerase , Ribonuclease III
17.
J Biol Chem ; 285(11): 8148-54, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20080973

RESUMO

Recent studies have uncovered an unexpected relationship between factors that are essential for germline development in Drosophila melanogaster: the arginine protein methyltransferase 5 (dPRMT5/Csul/Dart5) and its cofactor Valois, methylate the Piwi family protein Aub, enabling it to bind Tudor. The RNA helicase Vasa is another essential protein in germline development. Here, we report that mouse (mouse Vasa homolog), Xenopus laevis, and D. melanogaster Vasa proteins contain both symmetrical and asymmetrical dimethylarginines. We find that dPRMT5 is required for the production of sDMAs of Vasa in vivo. Furthermore, we find that the mouse Vasa homolog associates with Tudor domain-containing proteins, Tdrd1 and Tdrd6, as well as the Piwi proteins, Mili and Miwi. Arginine methylation is thus emerging as a conserved and pivotal post-translational modification of proteins that is essential for germline development.


Assuntos
Arginina/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Filogenia , Animais , Anticorpos Monoclonais , Especificidade de Anticorpos , Arginina/análogos & derivados , Proteínas Argonautas , Proteínas de Ciclo Celular , RNA Helicases DEAD-box/imunologia , Proteínas de Drosophila/imunologia , Drosophila melanogaster , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Masculino , Metilação , Camundongos , Oogênese/fisiologia , Proteínas Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases , Proteínas/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Espermatogênese/fisiologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/imunologia , Proteínas de Xenopus/metabolismo , Xenopus laevis
18.
RNA ; 16(1): 70-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19926723

RESUMO

Piwi proteins such as Drosophila Aubergine (Aub) and mouse Miwi are essential for germline development and for primordial germ cell (PGC) specification. They bind piRNAs and contain symmetrically dimethylated arginines (sDMAs), catalyzed by dPRMT5. PGC specification in Drosophila requires maternal inheritance of cytoplasmic factors, including Aub, dPRMT5, and Tudor (Tud), that are concentrated in the germ plasm at the posterior end of the oocyte. Here we show that Miwi binds to Tdrd6 and Aub binds to Tudor, in an sDMA-dependent manner, demonstrating that binding of sDMA-modified Piwi proteins with Tudor-domain proteins is an evolutionarily conserved interaction in germ cells. We report that in Drosophila tud(1) mutants, the piRNA pathway is intact and most transposons are not de-repressed. However, the localization of Aub in the germ plasm is severely reduced. These findings indicate that germ plasm assembly requires sDMA modification of Aub by dPRMT5, which, in turn, is required for binding to Tudor. Our study also suggests that the function of the piRNA pathway in PGC specification may be independent of its role in transposon control.


Assuntos
Arginina/metabolismo , Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Citoplasma/metabolismo , Drosophila/metabolismo , Feminino , Masculino , Metilação , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Proteínas Metiltransferases/metabolismo , Distribuição Tecidual
19.
Exp Dermatol ; 18(2): 130-3, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18637127

RESUMO

Ribonuclease P (RNase P) is ubiquitous and essential Mg(2+)-dependent endoribonuclease that catalyzes the 5'-maturation of transfer RNAs. RNase P and the ribosome are so far the only ribozymes known to be conserved in all kingdoms of life. Eukaryotic RNase P activity has been detected in nuclei, mitochondria and chloroplasts and demonstrates great variability in sequence and subunit composition. In the last few years we have developed methodologies and pursued projects addressing the occurrence, distribution and the potential physiological role of RNase P in human epidermal keratinocytes. In view of the vital importance of lymphocytes for an effective immune system and their successful application after transfection with RNase P-associated external guide sequences in gene therapy, we concerned ourselves with the isolation and characterization of RNase P of peripheral human lymphocytes. We developed a method described herein, that will enable the study of the possible involvement of this ribozyme in the pathogenetic mechanisms of diverse autoimmune, inflammatory and neoplastic cutaneous disorders and may facilitate the further development of RNase P-based technology for gene therapy of infectious and neoplastic dermatoses.


Assuntos
Cromatografia/métodos , Linfócitos/enzimologia , Ribonuclease P/isolamento & purificação , Autorradiografia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Framicetina/farmacologia , Humanos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Ribonuclease P/antagonistas & inibidores
20.
IUBMB Life ; 60(10): 669-83, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18636557

RESUMO

RNA molecules play critical roles in cell biology, and novel findings continuously broaden their functional repertoires. Apart from their well-documented participation in protein synthesis, it is now apparent that several noncoding RNAs (i.e., micro-RNAs and riboswitches) also participate in the regulation of gene expression. The discovery of catalytic RNAs had profound implications on our views concerning the evolution of life on our planet at a molecular level. A characteristic attribute of RNA, probably traced back to its ancestral origin, is the ability to interact with and be modulated by several ions and molecules of different sizes. The inhibition of ribosome activity by antibiotics has been extensively used as a therapeutical approach, while activation and substrate-specificity alteration have the potential to enhance the versatility of ribozyme-based tools in translational research. In this review, we will describe some representative examples of such modulators to illustrate the potential of catalytic RNAs as tools and targets in research and clinical approaches.


Assuntos
Regulação da Expressão Gênica , RNA Catalítico/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Sequência de Bases , Cátions Bivalentes/metabolismo , Ativação Enzimática , Íntrons , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA Catalítico/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Ribonuclease P/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Espermidina/química , Espermidina/metabolismo , Espermina/química , Espermina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA