Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39340173

RESUMO

In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.

2.
J Neuroeng Rehabil ; 16(1): 80, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253152

RESUMO

BACKGROUND: Kilohertz frequency alternating current (KHFAC) waveforms reversibly block conduction in mammalian peripheral nerves. The initiation of the KHFAC produces nerve activation, called the onset response, before complete block occurs. An amplitude ramp, starting from zero amplitude, is ineffective in eliminating this onset activity. We postulated that initiating the ramp from a non-zero amplitude would produce a different effect on the onset. METHODS: Experiments were conducted in an in vivo rat model. KHFAC was applied at supra block threshold amplitudes and then reduced to a lower sub block amplitude (25, 50, 75 and 90% of the block threshold amplitude). The amplitude was then increased again to the original supra block threshold amplitude with an amplitude ramp. This ramp time was varied for each of the amplitude levels tested. RESULTS: The amplitude ramp was successful in eliminating a second onset. This was always possible for the ramps up from 75 and 90% block threshold amplitude, usually from 50% but never from 25% of the block threshold amplitude. CONCLUSIONS: This maneuver can potentially be used to initiate complete nerve block, transition to partial block and then resume complete block without producing further onset responses.


Assuntos
Estimulação Elétrica/métodos , Condução Nervosa/fisiologia , Potenciais de Ação/fisiologia , Animais , Nervos Periféricos/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA