Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(20)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37887281

RESUMO

Salivary gland tumors (SGTs) are rare and complex neoplasms characterized by heterogenous histology and clinical behavior as well as resistance to systemic therapy. Tumor etiology is currently under elucidation and an interplay of genetic and epigenetic changes has been proposed to contribute to tumor development. In this work, we investigated epigenetic regulators and histone-modifying factors that may alter gene expression and participate in the pathogenesis of SGT neoplasms. We performed a detailed bioinformatic analysis on a publicly available RNA-seq dataset of 94 ACC tissues supplemented with clinical data and respective controls and generated a protein-protein interaction (PPI) network of chromatin and histone modification factors. A significant upregulation of TP53 and histone-modifying enzymes SUV39H1, EZH2, PRMT1, HDAC8, and KDM5B, along with the upregulation of DNA methyltransferase DNMT3A and ubiquitin ligase UHRF1 mRNA levels, as well as a downregulation of lysine acetyltransferase KAT2B levels, were detected in ACC tissues. The protein expression of p53, SUV39H1, EZH2, and HDAC8 was further validated in SGT tissues along with their functional deposition of the repressive histone marks H3K9me3 and H3K27me3, respectively. Overall, this study is the first to detect a network of interacting proteins affecting chromatin structure and histone modifications in salivary gland tumor cells, further providing mechanistic insights in the molecular profile of SGTs that confer to altered gene expression programs.


Assuntos
Histonas , Neoplasias das Glândulas Salivares , Humanos , Histonas/metabolismo , Cromatina , Metiltransferases/metabolismo , Epigênese Genética , Neoplasias das Glândulas Salivares/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Histona Desacetilases/metabolismo
2.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37373187

RESUMO

Salivary gland tumors (SGTs) comprise a rare and heterogenous category of benign/malignant neoplasms with progressively increasing knowledge of the molecular mechanisms underpinning their pathogenesis, poor prognosis, and therapeutic treatment efficacy. Emerging data are pointing toward an interplay of genetic and epigenetic factors contributing to their heterogeneity and diverse clinical phenotypes. Post-translational histone modifications such as histone acetylation/deacetylation have been shown to actively participate in the pathobiology of SGTs, further suggesting that histone deacetylating factors (HDACs), selective or pan-HDAC inhibitors (HDACis), might present effective treatment options for these neoplasms. Herein, we describe the molecular and epigenetic mechanisms underlying the pathology of the different types of SGTs, focusing on histone acetylation/deacetylation effects on gene expression as well as the progress of HDACis in SGT therapy and the current status of relevant clinical trials.


Assuntos
Neoplasias Encefálicas , Neoplasias das Glândulas Salivares , Humanos , Histonas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Neoplasias das Glândulas Salivares/tratamento farmacológico , Neoplasias das Glândulas Salivares/genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Acetilação
3.
Int J Oncol ; 60(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35169862

RESUMO

Biobanks constitute an integral part of precision medicine. They provide a repository of biospecimens that may be used to elucidate the pathophysiology, support diagnoses, and guide the treatment of diseases. The pilot biobank of rare malignant neoplasms has been established in the context of the Hellenic Network of Precision Medicine on Cancer and aims to enhance future clinical and/or research studies in Greece by collecting, processing, and storing rare malignant neoplasm samples with associated data. The biobank currently comprises 553 samples; 384 samples of hematopoietic and lymphoid tissue malignancies, 72 samples of pediatric brain tumors and 97 samples of malignant skin neoplasms. In this article, sample collections and their individual significance in clinical research are described in detail along with computational methods developed specifically for this project. A concise review of the Greek biobanking landscape is also delineated, in addition to recommended technologies, methodologies and protocols that were integrated during the creation of the biobank. This project is expected to re­enforce current clinical and research studies, introduce advances in clinical and genetic research and potentially aid in future targeted drug discovery. It is our belief that the future of medical research is entwined with accessible, effective, and ethical biobanking and that our project will facilitate research planning in the '­omic' era by contributing high­quality samples along with their associated data.


Assuntos
Bancos de Espécimes Biológicos/tendências , Neoplasias/patologia , Medicina de Precisão/tendências , Linhagem Celular Tumoral , Grécia , Humanos , Medicina de Precisão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA