Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675218

RESUMO

Hypoxia is a significant feature of solid tumors and frequently poses a challenge to the effectiveness of tumor-targeted chemotherapeutics, thereby limiting their anticancer activity. Hypoxia-activated prodrugs represent a class of bio-reductive agents that can be selectively activated in hypoxic compartments to unleash the toxic warhead and thus, eliminate malignant tumor cells. However, their applicability can be further elevated by installing fluorescent modalities to yield hypoxia-activated theragnostic prodrugs (HATPs), which can be utilized for the simultaneous visualization and treatment of hypoxic tumor cells. The scope of this review is to summarize noteworthy advances in recent HATPs, highlight the challenges and opportunities for their further development, and discuss their potency to serve as personalized medicines in the future.

2.
Pharmaceutics ; 16(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38399336

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) presents a formidable challenge with high lethality and limited effective drug treatments. Its heightened metastatic potential further complicates the prognosis. Owing to the significant toxicity of current chemotherapeutics, compounds like [Met5]-enkephalin, known as opioid growth factor (OGF), have emerged in oncology clinical trials. OGF, an endogenous peptide interacting with the OGF receptor (OGFr), plays a crucial role in inhibiting cell proliferation across various cancer types. This in vitro study explores the potential anticancer efficacy of a newly synthesized OGF bioconjugate in synergy with the classic chemotherapeutic agent, gemcitabine (OGF-Gem). The study delves into assessing the impact of the OGF-Gem conjugate on cell proliferation inhibition, cell cycle regulation, the induction of cellular senescence, and apoptosis. Furthermore, the antimetastatic potential of the OGF-Gem conjugate was demonstrated through evaluations using blood platelets and AsPC-1 cells with a light aggregometer. In summary, this article demonstrates the cytotoxic impact of the innovative OGF-Gem conjugate on pancreatic cancer cells in both 2D and 3D models. We highlight the potential of both the OGF-Gem conjugate and OGF alone in effectively inhibiting the ex vivo pancreatic tumor cell-induced platelet aggregation (TCIPA) process, a phenomenon not observed with Gem alone. Furthermore, the confirmed hemocompatibility of OGF-Gem with platelets reinforces its promising potential. We anticipate that this conjugation strategy will open avenues for the development of potent anticancer agents.

3.
Pharmaceutics ; 14(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35214094

RESUMO

The unmet need to develop novel approaches for cancer diagnosis and treatment has led to the evolution of theranostic agents, which usually include, in addition to the anticancer drug, an imaging agent based mostly on fluorescent agents. Over the past few years, a non-invasive photoacoustic imaging modality has been effectively integrated into theranostic agents. Herein, we shed light on the design principles governing the development of theranostic agents with photoacoustic properties, which can be formulated into nanocarriers to enhance their potency. Specifically, we provide an extensive analysis of their individual constituents including the imaging dyes, drugs, linkers, targeting moieties, and their formulation into nanocarriers. Along these lines, we present numerous relevant paradigms. Finally, we discuss the clinical relevance of the specific strategy, as also the limitations and future perspectives, and through this review, we envisage paving the way for the development of theranostic agents endowed with photoacoustic properties as effective anticancer medicines.

4.
J Biomol Struct Dyn ; 40(24): 13889-13900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34791990

RESUMO

Despite the scientific progression in the prevention and treatment of cardiovascular diseases (CVDs) they remain the leading cause of mortality and disability worldwide. The classic treatment involves the simultaneous dosing of two antiplatelet drugs, aspirin and clopidogrel/prasugrel. However, besides drug resistance, severe side effects have been also manifested including acute bleeding and toxicity. Thus, new therapeutic agents with enhanced efficacy and diminished side effects are of importance. Towards this end, omega-3 (ω-3) fatty acids have demonstrated potent efficacy against CVDs through inhibiting platelet aggregation that bears a pivotal role in atherothrombosis. Another factor that displays a critical role in the pathogenesis of cardiovascular diseases is the renin-angiotensin system (RAS), and especially the AT1R blocker losartan that has been reported to exert antiplatelet activity mediated by this receptor. Along these lines, we envisaged developing a molecular hybrid consisted of docosahexaenoic acid (ω-3 fatty acid) and losartan, that could exert a notable antiplatelet effect against CVDs. The design and synthesis of the new DHA-losartan hybrid, designated DHA-L, bestowed with the additive properties of the parent compounds, is reported. In silico studies were first exploited to validate the potential of DHA-L to retain losartan's ability to bind AT1R. The antiplatelet activity of DHA-L was evaluated against in vitro platelet aggregation induced by several platelet agonists. Notably, the hybrid illustrated a pleiotropic antiplatelet profile inhibiting platelet aggregation through multiple platelet activation pathways including P2Y12, PAR-1 (Protease-Activated Receptor-1), PAF (Platelet Activating Factor), COX-1 (cyclooxygenase-1) and collagen receptors. The stability of DHA-L in human plasma and in a wide range of pH values was also evaluated over time using an HPLC protocol. The hybridization approach described herein could pave the way for the development of novel potent multitargeted therapeutics with enhanced antiplatelet profile.Communicated by Ramaswamy H. Sarma.


Assuntos
Doenças Cardiovasculares , Agregação Plaquetária , Humanos , Losartan/farmacologia , Losartan/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Inibidores da Agregação Plaquetária/efeitos adversos
5.
Dalton Trans ; 50(26): 9215-9224, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34125130

RESUMO

There is a clear need to develop photostable chromophores for bioimaging with respect to the classically utilized green fluorescent dye fluorescein. Along these lines, we utilized a phosphorescent carboxy-substituted ruthenium(ii) polypyridyl [Ru(bipy)2(mcb)]2+ (bipy = 2,2'-bipyridyl and mcb = 4-carboxy-4'-methyl-2,2'-bipyridyl) complex. We developed two luminescent peptide conjugates of the cell-penetrating peptide Tat48-60 consisting of either [Ru(bipy)2(mcb)]2+ or 5(6)-carboxyfluorescein (5(6)-FAM) tethered on the Lys50 of the peptide through amide bond. We confirmed the efficient cellular uptake of both bioconjugates in HeLa cells by confocal microscopy and flow cytometry and proved that the ruthenium-based chromophore possesses enhanced photostability compared to a 5(6)-FAM-based peptide, after continuous laser scanning. Furthermore, we designed and developed a luminescent agent with high photostability, based on the ruthenium core, that could be selectively localized in cancer cells overexpressing the GnRH receptor (GnRH-R). To achieve this, we took advantage of the tumor-homing character of d-Lys6-GnRH which selectively recognizes the GnRH-R. The [Ru(bipy)2(mcb)]2+-d-Lys6-GnRH peptide conjugate was synthesized, and its cellular uptake was evaluated through flow cytometric analysis and live-cell imaging in HeLa and T24 bladder cancer cells as negative and positive controls of GnRH-R, respectively. Besides the selective targeting that the specific conjugate could offer, we also recorded high internalization levels in T24 bladder cancer cells. The ruthenium(ii) polypyridyl peptide-based conjugates we developed is an intriguing approach that offers targeted cell imaging in the Near Infrared region, and simultaneously paves the way for further advancements in the dynamic studies on cellular imaging.


Assuntos
Hormônio Liberador de Gonadotropina , Rutênio , Corantes Fluorescentes , Células HeLa , Humanos
6.
Eur J Med Chem ; 211: 113018, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33223264

RESUMO

Peptide-drug conjugates (PDCs) are gaining considerable attention as anti-neoplastic agents. However, their development is often laborious and time-consuming. Herein, we have developed and preclinically evaluated three PDCs with gemcitabine as the anticancer cytotoxic unit and D-Lys6-GnRH (gonadotropin-releasing hormone; GnRH) as the cancer-targeting unit. These units were tethered via acid-labile programmable linkers to guide a differential drug release rate from the PDC through a combination of ester or amide and "click" type oxime ligations. The pro-drugs were designed to enable the selective targeting of malignant tumor cells with linker guided differential drug release rates. We exploited the oxime bond responsiveness against the acidic pH of the tumor microenvironment and the GnRH endocytosis via the GnRH-R GPCR which is overexpressed on cancer cells. The challenging metabolic properties of gemcitabine were addressed during design of the PDCs. We developed a rapid (1 hour) and cost-effective "click" oxime bond ligation platform to assemble in one-pot the 3 desired PDCs that does not require purification, surpassing traditional time-ineffective and low yield methods. The internalization of the tumor-homing peptide unit in cancer cells, overexpressing the GnRH-R, was first validated through confocal laser microscopy and flow cytometry analysis. Subsequently, the three PDCs were evaluated for their in vitro antiproliferative effect in prostate cancer cells. Their stability and the release of gemcitabine over time were monitored in vitro in cell culture and in human plasma using LC-MS/MS. We then assessed the ability of the developed PDCs to internalize in prostate cancer cells and to release gemcitabine. The most potent analog, designated GOXG1, was used for pharmacokinetic studies in mice. The metabolism of GOXG1 was examined in liver microsomes, as well as in buffers mimicking the pH of intracellular organelles, resulting in the identification of two metabolites. The major metabolite at low pH emanated from the cleavage of the pH-labile oxime bond, validating our design approach. NMR spectroscopy and in vitro radioligand binding assays were exploited for GOXG1 to validate that upon conjugating the drug to the peptide, the peptide microenvironment responsible for its GnRH-R binding is not perturbed and to confirm its high binding potency to the GnRH-R. Finally, the binding of GOXG1 to the GnRH-R and the associated elicitation of testosterone release in mice were also determined. The facile platform established herein for the rapid assembly of PDCs with linker controllable characteristics from aldehyde and aminooxy units through rapid "click" oxime ligation, that does not require purification steps, could pave the way for a new generation of potent cancer therapeutics, diagnostics and theranostics.


Assuntos
Desoxicitidina/análogos & derivados , Hormônio Liberador de Gonadotropina/farmacologia , Oximas/farmacologia , Pró-Fármacos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Receptores LHRH/agonistas , Animais , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/química , Humanos , Concentração de Íons de Hidrogênio , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Oximas/administração & dosagem , Oximas/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores LHRH/genética , Receptores LHRH/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Gencitabina
7.
Methods Mol Biol ; 2207: 327-338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33113145

RESUMO

Cancer constitutes a major threat to humanity, while its incidence and mortality rates are increasing rapidly worldwide. To tackle cancer, numerous strategies have been exploited, including the development of peptide-drug conjugates (PDCs), which are considered an appealing approach to selectively populate malignant tumors with toxic substances. The general architecture of a PDC usually includes three parts: the tumor-targeting peptide, the cytotoxic drug, and the biodegradable linker. Due to the fact that peptides possess fast renal clearance, affecting the bioavailability of the PDC, a nanodrug formation concept can be exploited to ameliorate this pitfall. Herein, we present methodologies to develop PDCs, along with certain basic principles governing such constructs. In addition, we highlight possible problems that may appear during the synthesis of PDCs, as also solutions to overcome them.


Assuntos
Antineoplásicos , Portadores de Fármacos , Nanoestruturas , Neoplasias , Peptídeos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/farmacologia
8.
Free Radic Biol Med ; 160: 391-402, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32822744

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant brain tumor. Maximal surgical resection followed by radiotherapy and concomitant chemotherapy with temozolomide remains the first-line therapy, prolonging the survival of patients by an average of only 2.5 months. There is therefore an urgent need for novel therapeutic strategies to improve clinical outcomes. Reactive oxygen species (ROS) are an important contributor to GBM development. Here, we describe the rational design and synthesis of a stable hybrid molecule tethering two ROS regulating moieties, with the aim of constructing a chemopreventive and anticancer chemical entity that retains the properties of the parent compounds. We utilized the selective AT1R antagonist losartan, leading to the inhibition of ROS levels, and the antioxidant flavonoid quercetin. In GBM cells, we show that this hybrid retains the binding potential of losartan to the AT1R through competition-binding experiments and simultaneously exhibits ROS inhibition and antioxidant capacity similar to native quercetin. In addition, we demonstrate that the hybrid is able to alter the cell cycle distribution of GBM cells, leading to cell cycle arrest and to the induction of cytotoxic effects. Last, the hybrid significantly and selectively reduces cancer cell proliferation and angiogenesis in primary GBM cultures with respect to the isolated parent components or their simple combination, further emphasizing the potential utility of the current hybridization approach in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Losartan , Quercetina/farmacologia , Temozolomida/farmacologia
9.
Chemistry ; 26(47): 10690-10694, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32691857

RESUMO

Mutating the side-chains of amino acids in a peptide ligand, with unnatural amino acids, aiming to mitigate its short half-life is an established approach. However, it is hypothesized that mutating specific backbone peptide bonds with bioisosters can be exploited not only to enhance the proteolytic stability of parent peptides, but also to tune its receptor subtype selectivity. Towards this end, four [Y]6 -Angiotensin II analogues are synthesized where amide bonds have been replaced by 1,4-disubstituted 1,2,3-triazole isosteres in four different backbone locations. All the analogues possessed enhanced stability in human plasma in comparison with the parent peptide, whereas only two of them achieved enhanced AT2 R/AT1 R subtype selectivity. This diversification has been studied through 2D NMR spectroscopy and unveiled a putative more structured microenvironment for the two selective ligands accompanied with increased number of NOE cross-peaks. The most potent analogue, compound 2, has been explored regarding its neurotrophic potential and resulted in an enhanced neurite growth with respect to the established agent C21.


Assuntos
Angiotensina II/química , Angiotensina II/metabolismo , Mutação , Peptídeos/genética , Receptores de Angiotensina/química , Receptores de Angiotensina/metabolismo , Aminoácidos/genética , Angiotensina II/genética , Animais , Células HEK293 , Humanos , Ligantes , Peptídeos/química , Peptídeos/metabolismo , Especificidade por Substrato
10.
Eur J Med Chem ; 166: 256-266, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30716713

RESUMO

Peptide-drug conjugates have emerged as a potent approach to enhance the targeting and pharmacokinetic profiles of drugs. However, the impact of the linker unit has not been explored/exploited in depth. Gemcitabine (dFdC) is an anticancer agent used against a variety of solid tumours. Despite its potency, gemcitabine suffers mostly due to its unspecific toxicity, lack of targeting and rapid metabolic inactivation. To minimize these limitations and enable its targeting to tumours overexpressing the GnRH receptor, we examined the peptide-drug conjugation approach. Our design hypothesis was driven by the impact that the linker unit could have on the peptide-drug conjugate efficacy. Along these lines, in order to exploit the potential to manipulate the potency of gemcitabine through altering the linker unit we constructed three different novel peptide-drug conjugates assembled of gemcitabine, the tumour-homing peptide D-Lys6-GnRH and modified linker building blocks. Specifically, the linker was sculpted to either allow slow drug release (utilizing carbamate bond) or rapid disassociation (using amide and ester bonds). Notably, the new analogues possessed up to 95.5-fold enhanced binding affinity for the GnRH receptor (GnRH-R) compared to the natural peptide ligand D-Lys6-GnRH. Additionally, their in vitro cytotoxicity was evaluated in four different cancer cell lines. Their cellular uptake, release of gemcitabine and inactivation of gemcitabine to its inactive metabolite (dFdU) was explored in a representative cell line. In vitro stability and the consequent drug release were evaluated in cell culture medium and human plasma. In vivo pharmacokinetic studies were performed in mice, summarizing the relative stability of the three conjugates and the released levels of gemcitabine in comparison with dFdU. These studies suggest that the fine tuning of the linkage within a peptide-drug conjugate affects the drug release rate and its overall pharmaceutical profile. This could eventually emerge as an intriguing medicinal chemistry approach to optimize bio-profiles of prodrugs.


Assuntos
Desoxicitidina/análogos & derivados , Liberação Controlada de Fármacos , Hormônio Liberador de Gonadotropina/química , Lisina/química , Pró-Fármacos/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/química , Desoxicitidina/metabolismo , Desoxicitidina/farmacocinética , Desoxicitidina/farmacologia , Estabilidade de Medicamentos , Humanos , Espaço Intracelular/metabolismo , Células MCF-7 , Camundongos , Receptores LHRH/metabolismo , Gencitabina
11.
FEBS Lett ; 592(20): 3367-3379, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30207377

RESUMO

In-cell NMR spectroscopy has emerged as a powerful technique for monitoring biomolecular interactions at an atomic level inside intact cells. However, current methodologies are inadequate at charting intracellular interactions of nonlabeled proteins and require their prior isotopic labeling. Herein, we describe for the first time the monitoring of the quercetin-alanine bioconjugate interaction with the nonlabeled antiapoptotic protein Bcl-2 inside living human cancer cells. STD and Tr-NOESY in-cell NMR methodologies were successfully applied in the investigation of the binding, which was further validated in vitro. In-cell NMR proved a very promising strategy for the real-time probing of the interaction profile of potential drugs with their therapeutic targets in native cellular environments and could, thus, open a new avenue in drug discovery.


Assuntos
Alanina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quercetina/metabolismo , Alanina/química , Humanos , Células Jurkat , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Quercetina/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-30008308

RESUMO

Sunitinib is an oral FDA/EMEA approved multi-targeted tyrosine kinase inhibitor. It possesses anti-angiogenic and antitumor activity against a variety of advanced solid tumors. However, its chemical core does not allow a potential linkage to tumor-homing elements that could eventually enhance its potency. Therefore, a novel linkable sunitinib derivative, designated SB1, was rationally designed and synthesized. The pharmaceutical profile of SB1 was explored both in vitro and in vivo. Mass spectrometry and NMR spectroscopy were utilized for characterization, while MTT assays and LC-MS/MS validated protocols were used to explore its antiproliferative effect and stability, respectively. Cytotoxicity evaluation in three glioma cells showed that SB1 preserved the antiproliferative effect of sunitinib. SB1 was stable in vitro after 24 h incubation in mouse plasma, while both agents exhibited bioequivalent pharmacokinetic characteristics after i.v. administration in Balb/c mice. To evaluate the levels of SB1 in mouse plasma, a novel analytical method was developed and validated in accordance to the US FDA and the EU EMA guidelines. We formulated a novel linkable sunitinib analog exhibiting similar antiproliferative and apoptotic properties with native sunitinib in glioma cell lines. Both SB1 and native sunitinib showed identical in vitro stability in mouse plasma and pharmacokinetics after i.v. administration in Balb/c mice.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Indóis/química , Pirróis/química , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/análise , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Estabilidade de Medicamentos , Humanos , Indóis/sangue , Indóis/farmacocinética , Indóis/farmacologia , Modelos Lineares , Camundongos , Camundongos Endogâmicos BALB C , Pirróis/sangue , Pirróis/farmacocinética , Pirróis/farmacologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sunitinibe
13.
Beilstein J Org Chem ; 14: 930-954, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765474

RESUMO

Cancer is the second leading cause of death affecting nearly one in two people, and the appearance of new cases is projected to rise by >70% by 2030. To effectively combat the menace of cancer, a variety of strategies have been exploited. Among them, the development of peptide-drug conjugates (PDCs) is considered as an inextricable part of this armamentarium and is continuously explored as a viable approach to target malignant tumors. The general architecture of PDCs consists of three building blocks: the tumor-homing peptide, the cytotoxic agent and the biodegradable connecting linker. The aim of the current review is to provide a spherical perspective on the basic principles governing PDCs, as also the methodology to construct them. We aim to offer basic and integral knowledge on the rational design towards the construction of PDCs through analyzing each building block, as also to highlight the overall progress of this rapidly growing field. Therefore, we focus on several intriguing examples from the recent literature, including important PDCs that have progressed to phase III clinical trials. Last, we address possible difficulties that may emerge during the synthesis of PDCs, as also report ways to overcome them.

14.
Amino Acids ; 50(2): 279-291, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29185031

RESUMO

Quercetin is a flavonoid presenting cytotoxicity against different cancer cell lines. We hypothesized that its core could serve as a scaffold for generating more potent compounds. A quercetin-alanine bioconjugate was synthesized, its cellular internalization was monitored through confocal microscopy and its cytotoxic activity was explored against ten different cell lines. The bioconjugate consistently illustrated enhanced cytotoxic activity with respect to the parent compound. A threefold enhancement in its cytotoxicity was revealed for HeLa, A549, MCF-7 and LNCaP cells. In silico studies suggested that quercetin-alanine possesses enhanced binding affinity to human estrogen receptor alpha corroborating to its activity to MCF-7, overexpressing this receptor. Spectrofluorimetric, calorimetric and in silico studies revealed that quercetin-alanine binds primarily to Sudlow site I of serum albumin mainly through hydrogen bonding. Through this array of experiments we discovered that the specific compound bears a more refined pharmaceutical profile in contrast to quercetin in terms of cytotoxicity, while at the same time preserves its affinity to serum albumin. Natural products could thus offer a potent scaffold to develop bioconjugates with amplified therapeutic window.


Assuntos
Antineoplásicos/farmacologia , Quercetina/análogos & derivados , Quercetina/farmacologia , Alanina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Flavonoides/química , Flavonoides/metabolismo , Flavonoides/farmacologia , Humanos , Concentração Inibidora 50 , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Quercetina/química , Quercetina/metabolismo , Albumina Sérica/metabolismo , Relação Estrutura-Atividade
15.
Org Biomol Chem ; 15(37): 7956-7976, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28902204

RESUMO

Anti-apoptotic proteins, like the Bcl-2 family proteins, present an important therapeutic cancer drug target. Their activity is orchestrated through neutralization upon interaction of pro-apoptotic protein counterparts that leads to immortality of cancer cells. Therefore, generating compounds targeting these proteins is of immense therapeutic importance. Herein, Induced Fit Docking (IFD) and Molecular Dynamics (MD) simulations were performed to rationally design quercetin analogues that bind in the BH3 site of the Bcl-xL protein. IFD calculations determined their binding cavity while Molecular Mechanics Poisson Boltzmann Surface Area (MM-PBSA) and Molecular Mechanics Generalised Born Surface Area (MM-GBSA) calculations provided an insight into the binding enthalpies of the analogues. The quercetin analogues were synthesized and their binding to Bcl-xL was verified with fluorescence spectroscopy. The binding affinity and the thermodynamic parameters between Bcl-xL and quercetin-glutamic acid were estimated through Isothermal Titration Calorimetry. 2D 1H-15N HSQC NMR chemical shift perturbation mapping was used to chart the binding site of the quercetin analogues in the Bcl-xL that overlapped with the predicted poses generated by both IFD and MD calculations. Furthermore, evaluation of the four conjugates against the prostate DU-145 and PC-3 cancer cell lines, revealed quercetin-glutamic acid and quercetin-alanine as the most potent conjugates bearing the higher cytostatic activity. This pinpoints that the chemical space of natural products can be tailored to exploit new hits for difficult tractable targets such as protein-protein interactions.


Assuntos
Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Citostáticos/farmacologia , Desenho de Fármacos , Quercetina/farmacologia , Proteína bcl-X/antagonistas & inibidores , Aminoácidos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Citostáticos/síntese química , Citostáticos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Quercetina/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA