Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2321565121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739796

RESUMO

With a continuous increase in world population and food production, chemical pesticide use is growing accordingly, yet unsustainably. As chemical pesticides are harmful to the environment and developmental resistance in pests is increasing, a sustainable and effective pesticide alternative is needed. Inspired by nature, we mimic one defense strategy of plants, glandular trichomes, to shift away from using chemical pesticides by moving toward a physical immobilization strategy via adhesive particles. Through controlled oxidation of a biobased starting material, triglyceride oils, an adhesive material is created while monitoring the reactive intermediates. After being milled into particles, nanoindentation shows these particles to be adhesive even at low contact forces. A suspension of particles is then sprayed and found to be effective at immobilizing a target pest, thrips, Frankliniella occidentalis. Small arthropod pests, like thrips, can cause crop damage through virus transfer, which is prevented by their immobilization. We show that through a scalable fabrication process, biosourced materials can be used to create an effective, sustainable physical pesticide.


Assuntos
Adesivos , Adesivos/química , Animais , Tisanópteros/fisiologia , Praguicidas/química , Praguicidas/farmacologia , Tricomas/metabolismo
2.
Ecotoxicol Environ Saf ; 273: 116153, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422790

RESUMO

Microplastics have emerged as significant and concerning pollutants within soil ecosystems. Among the soil biota, entomopathogenic nematodes (EPNs) are lethal parasites of arthropods, and are considered among the most effective biological agents against pests. Infective juveniles (IJs) of EPNs, as they navigate the soil matrix scavenging for arthropod hosts to infect, they could potentially encounter microplastics. Howver, the impact of microplastics on EPNs has not been fully elucidated yet. We addressed this gap by subjecting Steinernema feltiae EPNs to polystyrene microplastics (PS-MPs) with various sizes, concentrations, and exposure durations. After confirming PS-MP ingestion by S. feltiae using fluorescent dyes, we found that the PS-MPs reduced the survival, reproduction, and pathogenicity of the tested EPNs, with effects intensifying for smaller PS-MPs (0.1-1 µm) at higher concentrations (105 µg/L). Furthermore, exposure to PS-MPs triggered oxidative stress in S. feltiae, leading to increased reactive oxygen species levels, compromised mitochondrial membrane potential, and increased antioxidative enzyme activity. Furthermore, transcriptome analyses revealed PS-MP-induced suppression of mitochondrial function and oxidative phosphorylation pathways. In conclusion, we show that ingestion of PS-MPs by EPNs can compromise their fitness, due to multple toxicity effects. Our results bear far-reaching consequences, as the presence of microplastics in soil ecosystems could undermine the ecological role of EPNs in regulating pest populations.


Assuntos
Artrópodes , Rabditídios , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Virulência , Ecossistema , Controle Biológico de Vetores , Rabditídios/fisiologia , Poliestirenos/toxicidade , Estresse Oxidativo , Reprodução , Antioxidantes , Solo
3.
Plant Cell Environ ; 47(2): 585-599, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37899642

RESUMO

A number of invasive plant species, such as Alternanthera philoxeroides, have been documented to be able to accumulate trace metal elements in their tissues. Since metal accumulation in plants can serve as a defence against herbivores, we hypothesized that metal pollution will increase herbivore resistance of metal-accumulating invasive plant species and such a benefit will grant them a competitive advantage over local co-occurring plants. In this study, we compared the differences in plant growth and herbivore feeding preference between A. philoxeroides and its native congener Alternanthera sessilis in single and mixed cultures with and without soil cadmium (Cd) pollution. The results showed that A. philoxeroides plants were more tolerant to Cd stress and accumulated more Cd in the leaves than A. sessilis. Cd exposure increased the resistance of A. philoxeroides against a specialist and a generalist herbivore compared with A. sessilis. Competition experiments indicated that Cd stress largely increased the competitive advantage of A. philoxeroides over A. sessilis with or without herbivore pressures. The differences in herbivore resistance between the two plant species under soil Cd stress are most likely due to the deterring effect of Cd accumulation and Cd-enhanced mechanical defences rather than changes in leaf specialized metabolites.


Assuntos
Jacarés e Crocodilos , Amaranthaceae , Animais , Cádmio/toxicidade , Herbivoria , Plantas , Espécies Introduzidas , Solo
4.
Front Plant Sci ; 14: 1233191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636092

RESUMO

Cannabis sativa L. is a plant with a wide range of potential medicinal applications. In recent years, polyploidy has gained attention as a potential strategy for rapidly improving C. sativa, which, unlike other modern crops, has not yet benefitted from this established biotechnological application. Currently, no reports on high THCA and CBDA drug-type polyploid cultivars have been published. Moreover, it still needs to be clarified if different cultivars react similarly to polyploidization. For these reasons, we set out to evaluate and compare the phenotype and chemotype of three high Δ9-tetrahydrocannabinolic acid (THCA) and one high cannabidiolic acid (CBDA) drug-type cultivars in their diploid, triploid and tetraploid state through agronomic and metabolomic approaches. Our observations on plant morphology revealed a significant increase in plant height and leaf size with increasing ploidy levels in a cultivar-dependent manner. In contrast, cannabinoids were negatively affected by polyploidization, with the concentration of total cannabinoids, THCA, CBDA and cannabigerolic acid (CBGA) decreasing significantly in higher ploidy levels across all four cultivars. Headspace analysis of volatiles revealed that total volatile content decreased in triploids. On the other hand, tetraploids reacted differently depending on the cultivars. Two THCA dominant cultivars showed an increase in concentrations, while in the other two cultivars, concentrations decreased. Additionally, several rare compounds not present in diploids appeared in higher ploidy levels. Moreover, in one high THCA cultivar, a couple of elite tetraploid genotypes for cannabinoid and volatile production were identified, highlighting the role of cultivar and genotypic variability as an important factor in Cannabis sativa L. polyploids. Overall, our observations on plant morphology align with the giga phenotype observed in polyploids of other plant species. The decrease in cannabinoids and volatiles production in triploids have relevant implications regarding their commercial use. On the other hand, this study found that tetraploidization is a suitable approach to improve Cannabis sativa L. medicinal potential, although the response is cultivar and genotype-dependent. This work lays the ground for further improving, evaluating and harnessing Cannabis sativa L. chemical diversity by the breeding, biotechnological and pharmaceutical sectors.

5.
Plant Methods ; 18(1): 92, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35780674

RESUMO

BACKGROUND: Bulk segregant analysis (BSA) can help identify quantitative trait loci (QTLs), but this may result in substantial bycatch of functionally irrelevant genes. RESULTS: Here we develop a Gene Ontology-mediated approach to zoom in on specific genes located inside QTLs identified by BSA as implicated in a continuous trait. We apply this to a novel experimental system: flowering time in the giant woody Jersey kale, which we phenotyped in four bulks of flowering onset. Our inferred QTLs yielded tens of thousands of candidate genes. We reduced this by two orders of magnitude by focusing on genes annotated with terms contained within relevant subgraphs of the Gene Ontology. A pathway enrichment test then led to the circadian rhythm pathway. The genes that enriched this pathway are attested from previous research as regulating flowering time. Within that pathway, the genes CCA1, FT, and TSF were identified as having functionally significant variation compared to Arabidopsis. We validated and confirmed our ontology-mediated results through genome sequencing and homology-based SNP analysis. However, our ontology-mediated approach produced additional genes of putative importance, showing that the approach aids in exploration and discovery. CONCLUSIONS: Our method is potentially applicable to the study of other complex traits and we therefore make our workflows available as open-source code and a reusable Docker container.

6.
Plant Sci ; 313: 111067, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763859

RESUMO

Concentration of plant secondary metabolites (SMs) show seasonal variations. However, it is still not well understood how these abiotic and biotic factors influence the seasonal variations of SMs. In addition, it is of interest to know if and how SMs are reallocated to the different plant organs, in particular whether SMs are reallocated to the remaining tissues when biomass is lost, e.g., during winter. Here we used Jacobaea vulgaris, Jacobaea aquatica, two F1 and four F2 hybrids that differed in their pyrrolizidine alkaloids (PAs) bouquet as a study system. A series of clones of these genotypes were investigated during their vegetative stage spanning 14 months in a semi-natural environment. We found that the total PA concentration in roots and shoots showed a gradual increase until the spring of the second year, whereafter it dropped substantially in shoots. The variation in PA composition due to seasonal changes was significant but relatively small. Senecionine-like PAs were the dominant PAs in roots, while jacobine-/erucifoline-like PAs were dominant in shoots. The variation of PA concentration was significantly correlated with temperature, day length, and plant age. A correlation analysis showed that PAs were not reallocated when biomass was lost in winter. Overall, our study showed that PA composition of each genotype changed over seasons in a different manner but seasonal variation did not overrule the differences in PA composition among genotypes.


Assuntos
Asteraceae/crescimento & desenvolvimento , Asteraceae/genética , Asteraceae/parasitologia , Variação Genética , Defesa das Plantas contra Herbivoria/genética , Alcaloides de Pirrolizidina/metabolismo , Metabolismo Secundário/genética , Células Clonais , Genótipo , Fotoperíodo , Estações do Ano , Temperatura
7.
Curr Biol ; 31(15): 3450-3456.e5, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34146488

RESUMO

It is increasingly evident that plants interact with their outside world through the production of volatile organic compounds,1-5 but whether the volatiles have evolved to serve in plant defense is still a topic of considerable debate.3,6-8 Unharmed leaves constitutively release small amounts of volatiles, but when the leaves are damaged by herbivorous arthropods, they emit substantially more volatiles. These herbivore-induced plant volatiles (HIPVs) attract parasitoids and predators that kill insect herbivores,9-12 and this can benefit the plants.13,14 As yet, however, there is no tangible evolutionary evidence that this tritrophic interplay contributes to the selection forces that have shaped the volatile emissions of plants.2,3,5-8,15 With this in mind, we investigated the evolutionary changes in volatile emissions in invasive common ragwort and the respective defensive roles of its constitutive and inducible volatiles. This Eurasian plant has invaded other continents, where it evolved for many generations in the absence of specialized herbivores and their natural enemies. We found that, compared to native ragworts, invasive plants release higher levels of constitutive volatiles but considerably lower levels of herbivore-induced volatiles. As a consequence, invasive ragwort is more attractive to a specialist moth but avoided by an unadapted generalist moth. Importantly, conforming to the indirect defense hypothesis, a specialist parasitoid was much more attracted to caterpillar-damaged native ragwort, which was reflected in higher parasitism rates in a field trial. The evolution of foliar volatile emissions appears to be indeed driven by their direct and indirect roles in defenses against insects.


Assuntos
Mariposas , Senécio/química , Compostos Orgânicos Voláteis , Animais , Evolução Molecular , Herbivoria , Insetos , Espécies Introduzidas , Folhas de Planta
8.
Molecules ; 26(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807368

RESUMO

Pyrrolizidine alkaloids (PAs) are a widespread group of secondary metabolites in plants. PAs are notorious for their acute hepatotoxicity, genotoxicity and neurological damage to humans and animals. In recent decades, the application of PAs for beneficial biological activities to cure disease has drawn greater attention. Here, we review the current knowledge regarding the pharmacological properties of PAs and discuss PAs as promising prototypes for the development of new drugs.


Assuntos
Plantas , Alcaloides de Pirrolizidina/farmacologia , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Plantas/química , Plantas/metabolismo
9.
Plant Sci ; 303: 110784, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487359

RESUMO

Phytohormone applications are used to mimic herbivory and can induce plant defences. This study investigated (i) metabolomic changes in leaf tissues of Jacobaea vulgaris and J. aquatica after methyl jasmonate (MeJA) and salicylic acid (SA) applications and (ii) the effects on a leaf-chewing, a leaf-mining and a piercing-sucking herbivore. MeJA treated leaves showed clearly different metabolomic profiles than control leaves, while the differences in metabolomic profiles between SA treated leaves and control leaves were less clear. More NMR peaks increased than decreased after MeJA treatment while this pattern was reversed after SA treatment. The leaf-chewing (Mamestra brassicae) and the leaf-mining herbivores (Liriomyza trifolii) fed less on MeJA-treated leaves compared to control and SA-treated leaves while they fed equally on the latter two. In J. aquatica but not in J. vulgaris, SA treatment reduced feeding damage by the piercing-sucking herbivore (Frankliniella occidentalis). Based on the herbivory and metabolomic data after phytohormone application, we made speculations as follows: For all three herbivore species, plants with high levels of threonine and citric acid showed less herbivory while plants with high levels of glucose showed more herbivory. Herbivory by thrips was lower on plants with high levels of alanine while it was higher on plants with high levels of 3,5-dicaffeoylquinic acid. The plant compounds that related to feeding of piercing-sucking herbivore were further verified with previous independent experiments.


Assuntos
Acetatos/farmacologia , Asteraceae/efeitos dos fármacos , Ciclopentanos/farmacologia , Metaboloma/efeitos dos fármacos , Oxilipinas/farmacologia , Defesa das Plantas contra Herbivoria/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Ácido Salicílico/farmacologia , Animais , Asteraceae/metabolismo , Dípteros , Larva , Mariposas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
10.
Plant Physiol Biochem ; 158: 334-341, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33243708

RESUMO

Persian poppy (Papaver bracteatum Lindl.) is a perennial medicinal plant belonging to the Papaveraceae family that is endemic to the mountainous areas in Northern Iran. It is known for high amounts of the valuable benzylisoquinoline alkaloid thebaine. The effects of induced polyploidy as well as the effect of methyl Jasmonate (MeJA) elicitation on the root production of thebaine and on the expression of five alkaloid biosynthesis related genes were studied. The in vitro tetraploidy induction caused a significant increased expression of norcoclaurine synthase (NCS) and salutaridinol (SAT), and a significant decreased expression of berberine bridge enzyme (BBE) in the leaves. In the root tissues, the BBE, NCS, and SAT showed an increased expression in tetraploid plants, while codeinone reductase (COR) showed a decreased expression. A similar alteration pattern was found in mixoploid plants when compared to their diploid counterparts. MeJA at concentrations of 0.1 and 0.5 mM caused a remarkable increase in the thebaine content in the roots of treated plants, where the highest thebaine content was identified in plants elicited with 0.5 mM MeJA. Elicitation treatment caused a substantial increase in the expression of NCS and SAT in the leaves, while it had no major effect on BBE, codeine 3-O-demethylase (CODM) and COR. Expression analysis in the roots showed that MeJA caused a significant increase in the expression of only BBE and NCS, while expression of other studied genes remained unchanged. Our results may be exploited for improved thebaine production and the processing of Persian poppy.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Papaver , Raízes de Plantas/metabolismo , Tebaína/farmacologia , Regulação da Expressão Gênica de Plantas , Irã (Geográfico) , Papaver/genética , Papaver/metabolismo , Raízes de Plantas/genética , Poliploidia
11.
BMC Plant Biol ; 20(1): 342, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32689941

RESUMO

BACKGROUND: Collectively, plants produce a huge variety of secondary metabolites (SMs) which are involved in the adaptation of plants to biotic and abiotic stresses. The most characteristic feature of SMs is their striking inter- and intraspecific chemical diversity. Cytochrome P450 monooxygenases (CYPs) often play an important role in the biosynthesis of SMs and thus in the evolution of chemical diversity. Here we studied the diversity and evolution of CYPs of two Jacobaea species which contain a characteristic group of SMs namely the pyrrolizidine alkaloids (PAs). RESULTS: We retrieved CYPs from RNA-seq data of J. vulgaris and J. aquatica, resulting in 221 and 157 full-length CYP genes, respectively. The analyses of conserved motifs confirmed that Jacobaea CYP proteins share conserved motifs including the heme-binding signature, the PERF motif, the K-helix and the I-helix. KEGG annotation revealed that the CYPs assigned as being SM metabolic pathway genes were all from the CYP71 clan but no CYPs were assigned as being involved in alkaloid pathways. Phylogenetic analyses of full-length CYPs were conducted for the six largest CYP families of Jacobaea (CYP71, CYP76, CYP706, CYP82, CYP93 and CYP72) and were compared with CYPs of two other members of the Asteraceae, Helianthus annuus and Lactuca sativa, and with Arabidopsis thaliana. The phylogenetic trees showed strong lineage specific diversification of CYPs, implying that the evolution of CYPs has been very fast even within the Asteraceae family. Only in the closely related species J. vulgaris and J. aquatica, CYPs were found often in pairs, confirming a close relationship in the evolutionary history. CONCLUSIONS: This study discovered 378 full-length CYPs in Jacobaea species, which can be used for future exploration of their functions, including possible involvement in PA biosynthesis and PA diversity.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Proteínas de Plantas/genética , Senécio/enzimologia , Biodiversidade , Sistema Enzimático do Citocromo P-450/metabolismo , Filogenia , Alcaloides de Pirrolizidina/metabolismo , Senécio/genética
12.
J Chem Ecol ; 46(8): 745-755, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32020484

RESUMO

Abiotic and biotic properties of soil can influence growth and chemical composition of plants. Although it is well-known that soil microbial composition can vary greatly spatially, how this variation affects plant chemical composition is poorly understood. We grew genetically identical Jacobaea vulgaris in sterilized soil inoculated with live soil collected from four natural grasslands and in 100% sterilized soil. Within each grassland we sampled eight plots, totalling 32 different inocula. Two samples per plot were collected, leading to three levels of spatial variation: within plot, between and within grasslands. The leaf metabolome was analysed with 1H Nuclear magnetic resonance spectroscopy (NMR) to investigate if inoculation altered the metabolome of plants and how this varied between and within grasslands. Inoculation led to changes in metabolomics profiles of J. vulgaris in two out of four sites. Plants grown in sterilized and inoculated soils differed in concentrations of malic acid, tyrosine, trehalose and two pyrrolizidine alkaloids (PA). Metabolomes of plants grown in inoculated soils from different sites varied in glucose, malic acid, trehalose, tyrosine and in one PA. The metabolome of plants grown in soils with inocula from the same site was more similar than with inocula from distant sites. We show that soil influences leaf metabolomes. Performance of aboveground insects often depends on chemical composition of plants. Hence our results imply that soil microbial communities, via affecting aboveground plant metabolomes, can impact aboveground plant-insect food chains but that it is difficult to make general predictions due to spatial variation in soil microbiomes.


Assuntos
Asteraceae/metabolismo , Metaboloma , Microbiologia do Solo , Asteraceae/genética , Microbiota , Folhas de Planta/metabolismo
13.
Front Plant Sci ; 10: 1016, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440269

RESUMO

The evolution of increased competitive ability (EICA) hypothesis and the shifting defense hypothesis (SDH) predict that evolutionary changes occur in a suite of traits related to defense and growth in invasive plant species as result of the absence of specialist herbivores. We tested how this suite of traits changed due to the absence of specialist herbivores in multiple invasive regions that differ in climatic conditions with native and invasive Jacobaea vulgaris in a controlled environment. We hypothesized that invasive J. vulgaris in all invasive regions have i) a higher plant growth and underlying traits, such as photosynthetic capacity, ii) lower regrowth-related traits, such as carbohydrate storage, and iii) an increased plant qualitative defense, such as pyrrolizidine alkaloids (PAs). Our results show that invasive J. vulgaris genotypes have evolved a higher photosynthetic rate and total PA concentration but a lower investment in root carbohydrates, which supports the SDH hypothesis. All the traits changed consistently and significantly in the same direction in all four invasive regions, indicative of a parallel evolution. Climatic and soil variables did differ between ranges but explained only a very small part of the variation in trait values. The latter suggests that climate and soil changes were not the main selective forces on these traits.

14.
Front Genet ; 10: 479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214243

RESUMO

Adaptation of complex traits depends on standing genetic variation at multiple loci. The allelic variants that have positive fitness effects, however, can differ depending on the genetic background and the selective pressure. Previously, we interrogated the Drosophila melanogaster genome at the population level for polymorphic positions and identified 215 single nucleotide polymorphisms (SNPs) that had significantly changed in frequency after experimental evolution for increased parasitoid resistance. In the current study, we follow up on 11 of these SNPs as putative targets of the experimental selection process (Jalvingh et al., 2014). We study the patterns of genetic variation for these SNPs in several European field populations. Furthermore, we associate the genetic variation of these SNPs to variation in resistance against the parasitoid Asobara tabida, by determining the individual phenotype and SNP genotype for 144 individuals from four Selection lines and four non-selected Control lines and for 400 individuals from 12 Field lines that differ in parasitoid resistance. For the Selection lines we additionally monitored the changes in allele frequencies throughout the five generations of experimental selection. For three genes, mbl (Zn-finger protein), mthl4 (G-protein coupled receptor) and CG17287 (protein-cysteine S-palmitoyltransferase) individual SNP genotypes were significantly associated with resistance level in the Selection and Control lines. Additionally, the minor allele in mbl and mthl4 were consistently and gradually favored throughout the five generations of experimental evolution. However, none of these alleles did appear to be associated to high resistance in the Field lines. We suggest that, within field populations, selection for parasitoid resistance is a gradual process that involves co-adapted gene complexes. Fast artificial selection, however, enforces the sudden cumulating of particular alleles that confer high resistance (genetic sweep). We discuss our findings in the context of local adaptation.

15.
Plant Cell Physiol ; 60(5): 1011-1024, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715458

RESUMO

Western flower thrips (WFT) are a major pest on many crops, including tomato. Thrips cause yield losses, not only through feeding damage, but also by the transmission of viruses of which the Tomato Spotted Wilt Virus is the most important one. In cultivated tomato, genetic diversity is extremely low, and all commercial lines are susceptible to WFT. Several wild relatives are WFT resistant and these resistances are based on glandular trichome-derived traits. Introgression of these traits in cultivated lines did not lead to WFT resistant commercial varieties so far. In this study, we investigated WFT resistance in cultivated tomato using a F2 population derived from a cross between a WFT susceptible and a WFT resistant cultivated tomato line. We discovered that this WFT resistance is independent of glandular trichome density or trichome-derived volatile profiles and is associated with three QTLs on chromosomes 4, 5 and 10. Foliar metabolic profiles of F3 families with low and high WFT feeding damage were clearly different. We identified α-tomatine and a phenolic compound as potential defensive compounds. Their causality and interaction need further investigation. Because this study is based on cultivated tomato lines, our findings can directly be used in nowadays breeding programs.


Assuntos
Flores/metabolismo , Flores/parasitologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Tisanópteros/patogenicidade , Tricomas/metabolismo , Animais , Flores/genética , Solanum lycopersicum/genética , Locos de Características Quantitativas/genética , Tricomas/genética
16.
J Chem Ecol ; 45(2): 136-145, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30284188

RESUMO

In this study we investigated the effect of methyl jasmonate (MeJA) application on pyrrolizidine alkaloid (PA) concentration and composition of two closely related Jacobaea species. In addition, we examined whether MeJA application affected herbivory of the polyphagous leaf feeding herbivore Spodoptera exigua. A range of concentrations of MeJA was added to the medium of Jacobaea vulgaris and J. aquatica tissue culture plants grown under axenic conditions. PA concentrations were measured in roots and shoots using LC-MS/MS. In neither species MeJA application did affect the total PA concentration at the whole plant level. In J. vulgaris the total PA concentration decreased in roots but increased in shoots. In J. aquatica a similar non-significant trend was observed. In both Jacobaea species MeJA application induced a strong shift from senecionine- to erucifoline-like PAs, while the jacobine- and otosenine-like PAs remained largely unaffected. The results show that MeJA application does not necessarily elicits de novo synthesis, but rather leads to PA conversion combined with reallocation of certain PAs from roots to shoots. S. exigua preferred feeding on control leaves of J. aquatica over MeJA treated leaves, while for J. vulgaris both the control and MeJA treated leaves were hardly eaten. This suggests that the MeJA-induced increase of erucifoline-like PAs can play a role in resistance of J. aquatica to S. exigua. In J. vulgaris resistance to S. exigua may already be high due to the presence of jacobine-like PAs or other resistance factors.


Assuntos
Acetatos/química , Ciclopentanos/química , Oxilipinas/química , Alcaloides de Pirrolizidina/química , Acetatos/metabolismo , Acetatos/farmacologia , Animais , Asteraceae/química , Asteraceae/metabolismo , Cromatografia Líquida de Alta Pressão , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Herbivoria/efeitos dos fármacos , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/metabolismo , Alcaloides de Pirrolizidina/metabolismo , Alcaloides de Pirrolizidina/farmacologia , Spodoptera/efeitos dos fármacos , Spodoptera/fisiologia , Espectrometria de Massas em Tandem
17.
J Chem Ecol ; 45(2): 116-127, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30221331

RESUMO

Plants produce an extremely diverse array of metabolites that mediate many aspects of plant-environment interactions. In the context of plant-herbivore interactions, it is as yet poorly understood how natural backgrounds shape the bioactivity of individual metabolites. We tested the effects of a methanol extract of Jacobaea plants and five fractions derived from this extract, on survival of western flower thrips (WFT). When added to an artificial diet, the five fractions all resulted in a higher WFT survival rate than the methanol extract. In addition, their expected combined effect on survival, assuming no interaction between them, was lower than that of the methanol extract. The bioactivity was restored when the fractions were combined again in their original proportion. These results strongly suggest synergistic interactions among the fractions on WFT survival rates. We then tested the effects of two pyrrolizidine alkaloids (PAs), free base retrorsine and retrorsine N-oxide, alone and in combination with the five shoot fractions on WFT survival. The magnitude of the effects of the two PAs depended on the fraction to which they were added. In general, free base retrorsine was more potent than retrorsine N-oxide, but this was contingent on the fraction to which these compounds were added. Our results support the commonly held, though seldom tested, notion that the efficacy of plant metabolites with respect to plant defence is dependent on their phytochemical background. It also shows that the assessment of bioactivity cannot be decoupled from the natural chemical background in which these metabolites occur.


Assuntos
Compostos Fitoquímicos/química , Alcaloides de Pirrolizidina/farmacologia , Tisanópteros/efeitos dos fármacos , Animais , Asteraceae/química , Asteraceae/metabolismo , Cromatografia Líquida de Alta Pressão , Flores/química , Flores/metabolismo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Brotos de Planta/química , Brotos de Planta/metabolismo , Alcaloides de Pirrolizidina/química , Espectrometria de Massas em Tandem , Tisanópteros/fisiologia
18.
Sci Rep ; 8(1): 14917, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297825

RESUMO

We hypothesized that due to the absence of specialist herbivores in introduced ranges, invasive plants have evolved decreased allocation to carbohydrate storage for regrowth ability and as a consequence allocate more to growth. In this study, we compared plant growth, carbohydrate storage and regrowth ability of invasive and native Jacobaea vulgaris in response to complete shoot defoliation. We used invasive J. vulgaris genotypes from three geographically and climactically distinct regions and compared these with native genotypes from Europe. We found that invasive genotypes initially grew larger while native genotypes regrew larger after defoliation. Before defoliation, the carbohydrate storage in roots of invasive genotypes was 38% lower than native genotypes. Biomass after regrowth increased with root carbohydrate storage while it decreased with structural root mass, showing that it is crucial to study root storage and structural components separately in order to investigate plant regrowth. All studied traits of invasive populations from the three geographically and climatologically distinct regions changed in the same expected direction suggesting that the shifts in herbivore guild were causal to the observed change in growth and regrowth ability rather than environmental factors.


Assuntos
Asteraceae/crescimento & desenvolvimento , Evolução Biológica , Metabolismo dos Carboidratos , Espécies Introduzidas , Biomassa , Clima , Análise Discriminante , Geografia , Análise dos Mínimos Quadrados , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
19.
Front Plant Sci ; 8: 903, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611815

RESUMO

The high structural diversity of plant metabolites suggests that interactions among them should be common. We investigated the effects of single metabolites and combinations of plant metabolites on insect herbivores. In particular we studied the interacting effects of pyrrolizidine alkaloid (PAs), and chlorogenic acid (CGA), on a generalist herbivore, Frankliniella occidentalis. We studied both the predominantly occurring PA N-oxides and the less frequent PA free bases. We found antagonistic effects between CGA and PA free bases on thrips mortality. In contrast PA N-oxides showed synergistic interactions with CGA. PA free bases caused a higher thrips mortality than PA N-oxides while the reverse was through for PAs in combination with CGA. Our results provide an explanation for the predominate storage of PA N-oxides in plants. We propose that antagonistic interactions represent a constraint on the accumulation of plant metabolites, as we found here for Jacobaea vulgaris. The results show that the bioactivity of a given metabolite is not merely dependent upon the amount and chemical structure of that metabolite, but also on the co-occurrence metabolites in, e.g., plant cells, tissues and organs. The significance of this study is beyond the concerns of the two specific groups tested here. The current study is one of the few studies so far that experimentally support the general conception that the interactions among plant metabolites are of great importance to plant-environment interactions.

20.
Phytochemistry ; 138: 93-103, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28267991

RESUMO

Plant specialised metabolites (SMs) are very diverse in terms of both their number and chemical structures with more than 200,000 estimated compounds. This chemical diversity occurs not only among different groups of compounds but also within the groups themselves. In the context of plant-insect interactions, the chemical diversity within a class of structurally related metabolites is generally also related to their bioactivity. In this study, we tested firstly whether individual SMs within the group of pyrrolizidine alkaloids (PAs) differ in their effects on insect herbivores (western flower thrips, Frankliniella occidentalis). Secondly, we tested combinations of PA N-oxides to determine whether they are more active than their individual components. We also evaluated the bioactivity of six PA free bases and their corresponding N-oxides. At concentrations similar to that in plants, several PAs reduced thrip's survival but the effect also differed strongly among PAs. In general, PA free bases caused a lower survival than their corresponding N-oxides. Among the tested PA free bases, we found jacobine and retrorsine to be the most active against second instar larvae of thrips, followed by erucifoline and seneciphylline, while senecionine and monocrotaline did not exhibit significant dose-dependent effects on thrip's survival. In the case of PA N-oxides, we found that only senecionine N-oxide and jacobine N-oxide reduced thrip's survival, although the effect of senecionine N-oxide was weak. Combinations of PA N-oxides showed no synergistic effects. These findings indicate the differences observed in the effect of structurally related SMs on insect herbivores. It is of limited value to study the bioactivity of combined groups, such as PAs, without taking their composition into account.


Assuntos
Herbivoria , Alcaloides de Pirrolizidina/química , Tisanópteros/efeitos dos fármacos , Animais , Larva , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA