Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38529488

RESUMO

The combination of ultra-long Oxford Nanopore (ONT) sequencing reads with long, accurate PacBio HiFi reads has enabled the completion of a human genome and spurred similar efforts to complete the genomes of many other species. However, this approach for complete, "telomere-to-telomere" genome assembly relies on multiple sequencing platforms, limiting its accessibility. ONT "Duplex" sequencing reads, where both strands of the DNA are read to improve quality, promise high per-base accuracy. To evaluate this new data type, we generated ONT Duplex data for three widely-studied genomes: human HG002, Solanum lycopersicum Heinz 1706 (tomato), and Zea mays B73 (maize). For the diploid, heterozygous HG002 genome, we also used "Pore-C" chromatin contact mapping to completely phase the haplotypes. We found the accuracy of Duplex data to be similar to HiFi sequencing, but with read lengths tens of kilobases longer, and the Pore-C data to be compatible with existing diploid assembly algorithms. This combination of read length and accuracy enables the construction of a high-quality initial assembly, which can then be further resolved using the ultra-long reads, and finally phased into chromosome-scale haplotypes with Pore-C. The resulting assemblies have a base accuracy exceeding 99.999% (Q50) and near-perfect continuity, with most chromosomes assembled as single contigs. We conclude that ONT sequencing is a viable alternative to HiFi sequencing for de novo genome assembly, and has the potential to provide a single-instrument solution for the reconstruction of complete genomes.

2.
Genomics ; 113(6): 4173-4183, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34774678

RESUMO

Cherries are stone fruits and belong to the economically important plant family of Rosaceae with worldwide cultivation of different species. The ground cherry, Prunus fruticosa Pall., is an ancestor of cultivated sour cherry, an important tetraploid cherry species. Here, we present a long read chromosome-level draft genome assembly and related plastid sequences using the Oxford Nanopore Technology PromethION platform and R10.3 pore type. We generated a final consensus genome sequence of 366 Mb comprising eight chromosomes. The N50 scaffold was ~44 Mb with the longest chromosome being 66.5 Mb. The chloroplast and mitochondrial genomes were 158,217 bp and 383,281 bp long, which is in accordance with previously published plastid sequences. This is the first report of the genome of ground cherry (P. fruticosa) sequenced by long read technology only. The datasets obtained from this study provide a foundation for future breeding, molecular and evolutionary analysis in Prunus studies.


Assuntos
Physalis , Prunus , Cromossomos , Physalis/genética , Melhoramento Vegetal , Prunus/genética , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA