Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1397066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903202

RESUMO

This work provides a brief comparative analysis of the influence of heat creation on micropolar blood-based unsteady magnetised hybrid nanofluid flow over a curved surface. The Powell-Eyring fluid model was applied for modelling purposes, and this work accounted for the impacts of both viscous dissipation and Joule heating. By investigating the behaviours of Ag and TiO2 nanoparticles dispersed in blood, we aimed to understand the intricate phenomenon of hybridisation. A mathematical framework was created in accordance with the fundamental flow assumptions to build the model. Then, the model was made dimensionless using similarity transformations. The problem of a dimensionless system was then effectively addressed using the homotopy analysis technique. A cylindrical surface was used to calculate the flow quantities, and the outcomes were visualised using graphs and tables. Additionally, a study was conducted to evaluate skin friction and heat transfer in relation to blood flow dynamics; heat transmission was enhanced to raise the Biot number values. According to the findings of this study, increasing the values of the unstable parameters results in increase of the blood velocity profile.

2.
PLoS One ; 19(4): e0297967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656969

RESUMO

Infectious disease cryptosporidiosis is caused by the cryptosporidium parasite, a type of parasitic organism. It is spread through the ingestion of contaminated water, food, or fecal matter from infected animals or humans. The control becomes difficult because the parasite may remain in the environment for a long period. In this work, we constructed an epidemic model for the infection of cryptosporidiosis in a fractional framework with strong and weak immunity concepts. In our analysis, we utilize the well-known next-generation matrix technique to evaluate the reproduction number of the recommended model, indicated by [Formula: see text]. As [Formula: see text], our results show that the disease-free steady-state is locally asymptotically stable; in other cases, it becomes unstable. Our emphasis is on the dynamical behavior and the qualitative analysis of cryptosporidiosis. Moreover, the fixed point theorem of Schaefer and Banach has been utilized to investigate the existence and uniqueness of the solution. We identify suitable conditions for the Ulam-Hyers stability of the proposed model of the parasitic infection. The impact of the determinants on the sickness caused by cryptosporidiosis is highlighted by the examination of the solution pathways using a novel numerical technique. Numerical investigation is conducted on the solution pathways of the system while varying various input factors. Policymakers and health officials are informed of the crucial factors pertaining to the infection system to aid in its control.


Assuntos
Criptosporidiose , Criptosporidiose/transmissão , Criptosporidiose/imunologia , Criptosporidiose/epidemiologia , Humanos , Animais , Cryptosporidium/imunologia
3.
Heliyon ; 10(8): e29696, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665553

RESUMO

The enhanced thermal efficiency exhibited by Casson nanofluids offers significant practical applications across various industrial and engineering sectors. This study focuses on the mathematical investigation of the steady magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid through a stretched/shrinking cylinder, taking into account the effects of suction and thermal radiation. The governing partial differential equations (PDEs) have been subjected to a similarity transformation, resulting in a set of nonlinear ordinary differential equations (ODEs). These ODEs were solved numerically utilizing the code of bvp4c in the software of Matlab which offers high accuracy (4th order). The employed nanofluid model incorporates the effects of Brownian motion and thermophoresis. The present study illustrates the graphical depictions of the impacts of different governing parameters, namely Hartmann (M) number, curvature (γ) parameter, Brownian motion (Nb) parameter, mass suction (S) parameter, thermal radiation (Rd) parameter, and thermophoresis (Nt) parameter, on heat transfer, flow, and mass transfer characteristics. Comprehensive determination and visual presentation of the coefficient of skin friction, local Nusselt number, and local Sherwood number were conducted for a range of estimates of applied parameters. Based on our examination, it has been determined that dual similarity solutions are present within a specific range of mass suction parameters. The relationship between the Casson parameter and various fluid dynamic properties, such as skin friction coefficient, heat transfer rate, and mass transfer rates, has been found to exhibit a decreasing trend. Furthermore, the stability analysis discovered that the first solution exhibits linear stability, whereas the second solution displays linear instability. Additionally, the motivation behind this study is to enhance industrial performance through the optimization of thermal power generation systems, thereby increasing their overall efficiency.

4.
Sci Rep ; 13(1): 21434, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052870

RESUMO

The study focuses on the behavior of an electrically conducting non-Newtonian fluid with couple stress properties, using water-based bionanofluid. The fluid is analyzed as it flows across a porous stretching/shrinking sheet within its own plane. This Study also explores the Bejan Number and Entropy Generation. To facilitate this investigation, the governing nonlinear partial differential equations undergo a transformation, wherein they are converted into nonlinear ordinary differential equations through a suitable similarity transformation. An ideal strategy has been employed to achieve the desired results from the modeled challenge. The Homotopy Analysis Method is applied to determine the solution of the system of differential equations. The convergence of the applied method and their comparison with the numerical method are described through graphs and tables. The main features of the different profiles are briefly described. Graphs are used to analyze the impact of the Bejan number, concentration, temperature, velocity profile, and entropy production rate. Tables present the characteristics of skin friction, Nusselt, and Sherwood numbers for various limitations. The stretching and ambient fluid velocities should fluctuate linearly as the distance from the stagnation point increases. A rise in the magnetic and porosity parameters is accompanied by an increase in the velocity profile. While the velocity profile falls off as a Couple of fluid parameters are increased. The phenomenon of temperature boost is observed to be positively correlated with the increase in Brownian motion parameter while exhibiting no significant dependence on other parameters such as Brinkman number, Prandtl number Lewis number and Thermophoresis parameter. Entropy generation increases with the Brinkman number while decreasing with the radiation parameter and diffusion parameter as is plainly demonstrated.

5.
Sci Rep ; 13(1): 14398, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658134

RESUMO

The burden of vector-borne infections is significant, particularly in low- and middle-income countries where vector populations are high and healthcare infrastructure may be inadequate. Further, studies are required to investigate the key factors of vector-borne infections to provide effective control measure. This study focuses on formulating a mathematical framework to characterize the spread of chikungunya infection in the presence of vaccines and treatments. The research is primarily dedicated to descriptive study and comprehension of dynamic behaviour of chikungunya dynamics. We use Banach's and Schaefer's fixed point theorems to investigate the existence and uniqueness of the suggested chikungunya framework resolution. Additionally, we confirm the Ulam-Hyers stability of the chikungunya system. To assess the impact of various parameters on the dynamics of chikungunya, we examine solution pathways using the Laplace-Adomian method of disintegration. Specifically, to visualise the impacts of fractional order, vaccination, bite rate and treatment computer algorithms are employed on the infection level of chikungunya. Our research identified the framework's essential input settings for managing chikungunya infection. Notably, the intensity of chikungunya infection can be reduced by lowering mosquito bite rates in the affected area. On the other hand, vaccination, memory index or fractional order, and treatment could be used as efficient controlling variables.


Assuntos
Febre de Chikungunya , Humanos , Febre de Chikungunya/prevenção & controle , Vacinação , Algoritmos , Instalações de Saúde , Registros
6.
Artigo em Inglês | MEDLINE | ID: mdl-37264653

RESUMO

An acute bacterial infection called avian spirochetosis is spread by ticks to a variety of birds. Clinical symptoms can vary greatly and are frequently non-specific. To diagnose a condition, the infectious spirochete must be detected. Here, we structure an epidemic model for the transmission of avian spirochetosis to visualize the interaction between tick and bird populations. The recommended dynamics of avian spirochetosis is illustrated with the help of fractional framework. We inspected the steady-states of the system of the avian spirochetosis for the stability analysis. The next-generation technique is used to evaluate the model's reproduction parameter R0. The infection-free and endemic steady-state of avian spirochetosis were shown to be locally asymptotically stable under the specified conditions. Through mathematical skills, the positivity of solutions is determined. Additionally, evidence supporting the existence and uniqueness of the avian spirochetosis framework solution has been shown. We conduct modified simulations of the suggested avian spirochetosis system with different input factors to study the complex phenomena of avian spirochetosis under the effect of numerous input parameters. Our outcomes illustrate the significance and plausibility of fractional parameter, and they also suggest that this input parameter may adequately account for these kinds of observations.

7.
Sci Rep ; 13(1): 3901, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890282

RESUMO

Hybrid Nano fluid has emerged to be an important field of study due to its better thermal performance compared to other Nano fluids. The problem of carbon nanotubes rotating between two stretchable discs while suspended in water is investigated in this research. Due to numerous uses of this problem, such as metal mining, drawing plastic films, and cooling continuous filaments, this problem is essential to industry. Considerations here include suction/injection, heat radiation, and the Darcy-Forchheimer scheme with convective boundary conditions. The partial differential equations are reduced to ordinary differential equations by using appropriate transformation. To examine the approximate solution validation, training and testing procedures are interpreted and the performance is verified through error histogram and mean square error results. To describe the behavior of flow quantities, several tabular and graphical representations of a variety of physical characteristics of importance are presented and discussed in detail. The basic aim of this research is to examine the behaviour of carbon nanotubes (nanoparticles) between stretchable disks while considering the heat generation/absorption parameter by using the Levenberg-Marquardt technique of artificial neural network. Heat transfer rate is accelerated by a decrease in velocity and temperature and an increase in the nanoparticle volume fraction parameter which is a significant finding of the current study.

8.
Heliyon ; 9(2): e13189, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36747513

RESUMO

Through a vertically shrinking sheet, a two-dimensional magnetic nanofluid is numerically analyzed for convection, heat generation and absorption, and the slip velocity effect. In this research, Al2O3-Cu/water composite nanofluid is studied, where water is deemed the base liquid and copper (Cu) and alumina (Al2O3) are the solid nanoparticles. Modern composite nanofluids improve heat transfer efficiency. Using the Tiwari-Das model, the current study examines the effects of the solid volume fraction of copper, heat generation/absorption, MHD, mixed convection, and velocity slip parameters on velocity and temperature distributions. Introducing exponential similarity variables converts nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). MATLAB bvp4c solver is used to solve ODEs. Results showed dual solutions for suction with 0%-10% copper nanoparticles and 1%-500% heat generation/absorption. As copper (Cu) solid volume percentage increases from 0% to 10%, reduced skin friction f ″ ( 0 ) boosts in the first solution but falls in the second. When Cu is added to both solutions, heat transport - θ ' ( 0 ) decreases. As heat generation/absorption increases 1%-500%, - θ ' ( 0 ) decreases in both solutions. In conclusion, solution dichotomy exists when suction parameter S ≥ S c i in assisting flow case, while no fluid flow is possible when S < S c i .

9.
ACS Omega ; 8(2): 1937-1945, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687094

RESUMO

A novel pair of protein tyrosine phosphatases in Drosophila melanogaster (pupal retina) has been identified. Phosphotyrosyl protein phosphatases (PTPs) are structurally diverse enzymes increasingly recognized as having a fundamental role in cellular processes including effects on metabolism, cell proliferation, and differentiation. This study presents identification of novel sequences of PTPs and their comparative homology modeling from Drosophila melanogaster (Dr-PTPs) and complexation with the potent inhibitor HEPES. The 3D structure was predicted based on sequence homology with bovine heart low molecular weight PTPs (Bh-PTPs). The sequence homologies are approximately 50% identical to each other and to low molecular weight protein tyrosine phosphatases (PTPs) in other species. Comparison of the 3D structures of Bh-PTPs and Dr-PTPs (primo-2) reveals a remarkable similarity having a four stranded central parallel ß sheet with flanking α helices on both sides, showing two right handed ß-α-ß motifs. The inhibitor shows similar binding features as seen in other PTPs. The study also highlights the key catalytic residues important for target recognition and PTPs' activation. The structure guided studies of both proteins clearly reveal a common mechanism of action and inhibitor binding at the active site and will be expected to contribute toward the basic understanding of functional association of this enzyme with other molecules.

10.
Comput Methods Biomech Biomed Engin ; 26(11): 1294-1307, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36006368

RESUMO

Drinking or recreating water that has been polluted with disease-causing organisms or pathogens is what causes waterborne infections. It should be noted that many water-borne infections can also transmit from person to person, by contact with animals or their surroundings, or by ingesting tainted food or beverages. Schistosomiasis is a water-borne infection found in different areas of the globe. Mostly people with this viral infection live in Africa with limited resources and medications. Therefore, investigation of this infection is significant to reduce its economic burden on the society. We formulated a novel epidemic model for schistosomiasis water-borne infection with the help of the Atangana-Baleanu derivative. The rudimentary theory of fractional-calculus has been presented for the analysis of our system. We start by looking at the model solution's non-negativity and uniqueness. The basic reproduction number and equilibria of the hypothesized water-borne infection model are next evaluated. Local stability of the infection-free steady-state has been established through Jacobian matrix method for R0<1. In addition, the suggested model's solution is calculated using an iterative technique. Finally, we give numerical simulations for various input values to illustrate the impact of memory index and other input factors of the system. Our findings showed the influence of input parameters on the dynamical behaviour of the schistosomiasis infection. The results demonstrate the importance and persuasive behaviour of fractional order, and reveal that fractional memory effects in the model seem to be a good fit for this type of findings.


Assuntos
Doenças Transmitidas pela Água , Animais , Água
11.
Gels ; 10(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247749

RESUMO

In this study, the potential use of Artemisia dracunculus essential oil in bio-applications was investigated. Firstly, the phytochemicals from Artemisia dracunculus were analyzed by different methods. Secondly, the Artemisia dracunculus essential oil was incorporated into the hydrogel matrix based on poly(vinyl alcohol) (PVA) and agar (A). The structural, morphological, and physical properties of the hydrogel matrix loaded with different amounts of Artemisia dracunculus essential oil were thoroughly investigated. FTIR analysis revealed the successful loading of the essential oil Artemisia dracunculus into the PVA/A hydrogel matrix. The influence of the mechanical properties and antimicrobial activity of the PVA/A hydrogel matrix loaded with different amounts of Artemisia dracunculus was also assessed. The antimicrobial activity of Artemisia dracunculus (EO Artemisia dracunculus) essential oil was tested using the disk diffusion method and the time-kill assay method after entrapment in the PVA/A hydrogel matrices. The results showed that PVA/agar-based hydrogels loaded with EO Artemisia dracunculus exhibited significant antimicrobial activity (log reduction ratio in the range of 85.5111-100%) against nine pathogenic isolates, both Gram-positive (S. aureus, MRSA, E. faecalis, L. monocytogenes) and Gram-negative (E. coli, K. pneumoniae, S. enteritidis, S. typhimurium, and A. salmonicida). The resulted biocompatible polymers proved to have enhanced properties when functionalized with the essential oil of Artemisia dracunculus, offering opportunities and possibilities for novel applications.

12.
Sci Rep ; 12(1): 21126, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477598

RESUMO

The attention of the current study is on the flow of a non-Newtonian incompressible Cu-Water nanofluid flow. The water is assumed as base fluid, while copper is used as nanoparticles. The Ree-Eyring prototype describes the performance of non-Newtonian nanofluids. There is a conical gap that nanofluid flow fills among the plane disc and the cone's stationary/rotational porous faces. Additionally taken into account are heat, mass transfer, and entropy production. The given mathematical model is unique due to the effects of a vertically applied Hall Effect, Ohmic dissipation, viscous dissipation, and chemical processes. The Ree-Eyring fluid constitutive equations, as well as the cylindrical coordinates, have been interpreted. The model equations for motion, heat, and concentration can be changed in the collection of non-linear ODEs by employing the applicable similarity transform. This method allocates a couple of nonlinear ODEs relating to velocity, temperature, and concentration distributions. The shooting scheme (bvp4c technique) is used to solve these equations numerically. Statistical analysis like probable error, correlation, and regression are exploited. The probable error is estimated to compute the consistency of the calculated correlation features. The theoretical data is analyzed in both graphical and tabular forms. The modeled parameters like, magnetic number, porosity parameter, Eckert number, chemical reaction parameter, Brownian motion parameter, thermophoretic parameter, Schmidt number, Hall recent parameter, radiation parameter, and volume fraction are discussed in details graphically and theoretically. The outcomes indicate that the velocity components are greater for greater values of nanoparticle volume fraction and Weissenberg number, whereas for enormous values of magnetic and porosity parameters, the velocity components fall.

13.
Sci Rep ; 12(1): 18523, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323791

RESUMO

The current study investigates the MHD flow of nanofluid across an elongating surface while taking into account non-uniform heat flux. For this, we have considered the flow of a boundary layer over a stretched sheet containing (water-based) Al2O3 nanoparticles. The convective boundary conditions for temperature have been invoked. The flow created by a surface that is exponentially expanding in the presence of a magnetic field and a non-uniform heat flux has been mathematically formulated by using laws of conservation. Transformed non-dimensional systems of governing equations have been analyzed numerically by using Adam's Bashforth predictor corrector approach. The effects of emerging parameters on the fluid velocity and temperature profiles have been further described by plotting graphs. An experimental design and a sensitivity analysis based on Response Surface Methodology (RSM) are used to examine the effects of various physical factors and the dependence of the response factors of interest on the change of the input parameter. To establish the model dependencies of the output response variables, which include the skin friction coefficient and the local Nusselt number, on the independent input parameters, which include the magnetic field parameter, the nanoparticle volume fraction, and the heat transfer Biot number, RSM is used. On the basis of statistical measures such as [Formula: see text] residual plots, adjusted and hypothesis testing using p values, it is observed that both of our models for Skin Friction Coefficient (SFC) and the Local Nusselt Number (LNN) are best fitted. Further, it is concluded that the sensitivity of the SFC, as well as the LNN through heat transfer Biot number, is greater than that of nanoparticle volume fraction and magnetic field parameter. The SFC is sensitive to all combinations of the input parameters. At high levels of heat transfer Biot number, the LNN displays negative sensitivity via magnetic field parameters.

14.
ACS Omega ; 7(31): 27436-27449, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967050

RESUMO

Stratification is used in a wide range of energy storage fields, including solar thermal energy systems. This paper investigates entropy optimization and the effects of heat production, magnetic field, and various fluid parameters on the flow of second-grade fluid through unstratified and stably stratified paraboloids of revolution. In the heat transfer equation, stratification, linear thermal radiation, and Joule dissipation have all been explored. The similarity transformation is used to convert the governing PDEs into nonlinear ODEs. The HAM (homotopy analysis method) is used to solve dimensionless nonlinear ODEs. The impact of significant elements on various profiles is exposed and explored. Graphical results are used to examine the influence of the velocity profile, temperature, concentration, and entropy formation rate using tables to indicate the characteristics of skin friction, Nusselt number, and Sherwood number for numerous parameters. It is noticed that the velocity is enhanced by raising the stratification parameter, while the opposite behavior is observed for temperature distribution. The concentration profile declined as the solute stratification parameter was enhanced. For both the unstratified and stratified regions, incremental values of the Brinkman number and magnetic parameter depict augmentation in entropy production, while entropy production drops for a large value of the temperature ratio parameter.

15.
Micromachines (Basel) ; 13(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014225

RESUMO

Nanofluids are extremely useful to investigators due to their greater heat transfer rates, which have significant applications in multiple industries. The primary objective of this article is to look into the effect of viscous dissipation in Sisko nano liquid flow with gold Au nanoparticles on a porous stenosis artery. Heat transfer properties were explored. Blood was utilized as a base fluid for nanoparticles. To renovate the governing nonlinear PDEs into nonlinear ODEs, appropriate transformations were used. The bvp4c-based shooting method, via MATLAB, was used to determine the numerical results of the nonlinear ODEs. Furthermore, flow forecasts for each physical quantity were explored. To demonstrate the physical influences of flow constraints versus presumed flow fields, physical explanations were used. The findings demonstrated that the velocity contour improved as the volume fraction, curvature, power law index, and material parameter upsurged. For the Prandtl number, the volume fraction of nanoparticles, the index of the power law, and the temperature profile of the nanofluid declined. Furthermore, the drag force and transfer of the heat were also investigated as explanations for influences on blood flow. Further, the Nusselt number reduced and the drag force enhanced as the curvature parameter values increased. The modeling and numerical solutions play an impressive role in predicting the cause of atherosclerosis.

16.
Nanomaterials (Basel) ; 12(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35564275

RESUMO

The effect of thermal radiation on the three-dimensional magnetized rotating flow of a hybrid nanofluid has been numerically investigated. Enhancing heat transmission is a contemporary engineering challenge in a range of sectors, including heat exchangers, electronics, chemical and biological reactors, and medical detectors. The main goal of the current study is to investigate the effect of magnetic parameter, solid volume fraction of copper, Eckert number, and radiation parameter on velocity and temperature distributions, and the consequence of solid volume fraction on declined skin friction and heat transfer against suction and a stretching/shrinking surface. A hybrid nanofluid is a contemporary type of nanofluid that is used to increase heat transfer performance. A linear similarity variable is−applied to convert the governing partial differential equations (PDEs) into corresponding ordinary differential equations (ODEs). Using the three-stage Labatto III-A method included in the MATLAB software's bvp4c solver, the ODE system is solved numerically. In certain ranges of involved parameters, two solutions are received. The temperature profile θη upsurges in both solutions with growing values of EC and Rd. Moreover, the conclusion is that solution duality exists when the suction parameter S≥Sci, while no flow of fluid is possible when S

17.
Artigo em Inglês | MEDLINE | ID: mdl-35329394

RESUMO

This report develops a conceivable mathematical model for the transmission and spread of COVID-19 in Romania. Understanding the early spread dynamics of the infection and evaluating the effectiveness of control measures in the first wave of infection is crucial for assessing and evaluating the potential for sustained transmission occurring in the second wave. The main aim of the study was to emphasize the impact of control measures and the rate of case detection in slowing the spread of the disease. Non pharmaceutical control interventions include government actions, public reactions, and other measures. The methodology consists of an empirical model, taking into consideration the generic framework of the Stockholm Environment Institute (SEI) Epidemic-Macroeconomic Model, and incorporates the effect of interventions through a multivalued parameter, a stepwise constant varying during different phases of the interventions designed to capture their impact on the model. The model is mathematically consistent and presents various simulation results using best-estimated parameter values. The model can be easily updated later in response to real-world alterations, for example, the easing of restrictions. We hope that our simulation results may guide local authorities to make timely, correct decisions for public health and risk assessment.


Assuntos
COVID-19 , Epidemias , COVID-19/epidemiologia , Simulação por Computador , Humanos , Saúde Pública , Medição de Risco
18.
Micromachines (Basel) ; 14(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36677167

RESUMO

Nanoparticles have presented various hurdles to the scientific community during the past decade. The nanoparticles dispersed in diverse base fluids can alter the properties of fluid flow and heat transmission. In the current examination, a mathematical model for the 2D magnetohydrodynamic (MHD) Darcy-Forchheimer nanofluid flow across an exponentially contracting sheet is presented. In this mathematical model, the effects of viscous dissipation, joule heating, first-order velocity, and thermal slip conditions are also examined. Using similarity transformations, a system of partial differential equations (PDEs) is converted into a set of ordinary differential equations (ODEs). The problem is quantitatively solved using the three-step Lobatto-three formula. This research studied the effects of the dimensionlessness, magnetic field, ratio of rates, porosity, Eckert number, Prandtl number, and coefficient of inertia characteristics on fluid flow. Multiple solutions were observed. In the first solution, the increased magnetic field, porosity parameter, slip effect, and volume percentage of the copper parameters reduce the velocity field along the η-direction. In the second solution, the magnetic field, porosity parameter, slip effect, and volume percentage of the copper parameters increase the η-direction velocity field. For engineering purposes, the graphs show the impacts of factors on the Nusselt number and skin friction. Finally, the stability analysis was performed to determine which solution was the more stable of the two.

19.
Sci Rep ; 10(1): 67, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919389

RESUMO

The effect of gamma-irradiation and ionizing radiation (high-energy electrons beam) on the physicochemical properties of metoprolol tartrate at the solid phase and aqueous solution, has been investigated in the present study to model some properties affected by absorbed doses and to reveal some interesting mutual causal correlation. The proposed some interesting models can be adapted to other experimental conditions, and the newly obtained values of the adjustable parameters could be an excellent criterion of the state quality of the metoprolol tartrate or for other additional interpretations. The peculiar behaviour of variation of physicochemical properties against dose leads us to confirm the suggested optimized doses mentioned in previous work, for sterilization and safe medical uses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA