Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(6): 904-930, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337057

RESUMO

Mitochondrial outer membrane permeabilisation (MOMP) is often essential for apoptosis, by enabling cytochrome c release that leads to caspase activation and rapid cell death. Recently, MOMP has been shown to be inherently pro-inflammatory with emerging cellular roles, including its ability to elicit anti-tumour immunity. Nonetheless, how MOMP triggers inflammation and how the cell regulates this remains poorly defined. We find that upon MOMP, many proteins localised either to inner or outer mitochondrial membranes are ubiquitylated in a promiscuous manner. This extensive ubiquitylation serves to recruit the essential adaptor molecule NEMO, leading to the activation of pro-inflammatory NF-κB signalling. We show that disruption of mitochondrial outer membrane integrity through different means leads to the engagement of a similar pro-inflammatory signalling platform. Therefore, mitochondrial integrity directly controls inflammation, such that permeabilised mitochondria initiate NF-κB signalling.


Assuntos
NF-kappa B , Ubiquitina , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Ubiquitina/metabolismo , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Apoptose/fisiologia , Inflamação/metabolismo
2.
Cell Death Differ ; 30(2): 304-312, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36447047

RESUMO

Mitochondria have recently emerged as key drivers of inflammation associated with cell death. Many of the pro-inflammatory pathways activated during cell death occur upon mitochondrial outer membrane permeabilization (MOMP), the pivotal commitment point to cell death during mitochondrial apoptosis. Permeabilised mitochondria trigger inflammation, in part, through the release of mitochondrial-derived damage-associated molecular patterns (DAMPs). Caspases, while dispensable for cell death during mitochondrial apoptosis, inhibit activation of pro-inflammatory pathways after MOMP. Some of these mitochondrial-activated inflammatory pathways can be traced back to the bacterial ancestry of mitochondria. For instance, mtDNA and bacterial DNA are highly similar thereby activating similar cell autonomous immune signalling pathways. The bacterial origin of mitochondria suggests that inflammatory pathways found in cytosol-invading bacteria may be relevant to mitochondrial-driven inflammation after MOMP. In this review, we discuss how mitochondria can initiate inflammation during cell death highlighting parallels with bacterial activation of inflammation. Moreover, we discuss the roles of mitochondrial inflammation during cell death and how these processes may potentially be harnessed therapeutically, for instance to improve cancer treatment.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Humanos , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Morte Celular , Apoptose/fisiologia , Inflamação/metabolismo
3.
Dev Cell ; 57(10): 1211-1225.e6, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35447090

RESUMO

Mitochondrial dysfunction is interconnected with cancer. Nevertheless, how defective mitochondria promote cancer is poorly understood. We find that mitochondrial dysfunction promotes DNA damage under conditions of increased apoptotic priming. Underlying this process, we reveal a key role for mitochondrial dynamics in the regulation of DNA damage and genome instability. The ability of mitochondrial dynamics to regulate oncogenic DNA damage centers upon the control of minority mitochondrial outer membrane permeabilization (MOMP), a process that enables non-lethal caspase activation leading to DNA damage. Mitochondrial fusion suppresses minority MOMP and its associated DNA damage by enabling homogeneous mitochondrial expression of anti-apoptotic BCL-2 proteins. Finally, we find that mitochondrial dysfunction inhibits pro-apoptotic BAX retrotranslocation, causing BAX mitochondrial localization and thereby promoting minority MOMP. Unexpectedly, these data reveal oncogenic effects of mitochondrial dysfunction that are mediated via mitochondrial dynamics and caspase-dependent DNA damage.


Assuntos
Caspases , Dinâmica Mitocondrial , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Caspases/metabolismo , Dano ao DNA , Instabilidade Genômica , Humanos , Proteína X Associada a bcl-2/metabolismo
4.
J Inherit Metab Dis ; 43(2): 200-215, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31603991

RESUMO

Glutamate is involved in a variety of metabolic pathways. We reviewed the literature on genetic defects of enzymes that directly metabolise glutamate, leading to inborn errors of glutamate metabolism. Seventeen genetic defects of glutamate metabolising enzymes have been reported, of which three were only recently identified. These 17 defects affect the inter-conversion of glutamine and glutamate, amino acid metabolism, ammonia detoxification, and glutathione metabolism. We provide an overview of the clinical and biochemical phenotypes of these rare defects in an effort to ease their recognition. By categorising these by biochemical pathway, we aim to create insight into the contributing role of deviant glutamate and glutamine levels to the pathophysiology. For those disorders involving the inter-conversion of glutamine and glutamate, these deviant levels are postulated to play a pivotal pathophysiologic role. For the other IEM however-with the exception of urea cycle defects-abnormal glutamate and glutamine concentrations were rarely reported. To create insight into the clinical consequences of disturbed glutamate metabolism-rather than individual glutamate and glutamine levels-the prevalence of phenotypic abnormalities within the 17 IEM was compared to their prevalence within all Mendelian disorders and subsequently all disorders with metabolic abnormalities notated in the Human Phenotype Ontology (HPO) database. For this, a hierarchical database of all phenotypic abnormalities of the 17 defects in glutamate metabolism based on HPO was created. A neurologic phenotypic spectrum of developmental delay, ataxia, seizures, and hypotonia are common in the inborn errors of enzymes in glutamate metabolism. Additionally, ophthalmologic and skin abnormalities are often present, suggesting that disturbed glutamate homeostasis affects tissues of ectodermal origin: brain, eye, and skin. Reporting glutamate and glutamine concentrations in patients with inborn errors of glutamate metabolism would provide additional insight into the pathophysiology.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Glutamatos/metabolismo , Glutamina/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Bases de Dados Factuais , Deficiências Nutricionais/etiologia , Glutamatos/deficiência , Glutamina/deficiência , Humanos
5.
Front Cell Dev Biol ; 7: 100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316979

RESUMO

Mitochondrial outer membrane permeabilization (MOMP) is essential to initiate mitochondrial apoptosis. Due to the disruption of mitochondrial outer membrane integrity, intermembrane space proteins, notably cytochrome c, are released into the cytosol whereupon they activate caspase proteases and apoptosis. Beyond its well-established apoptotic role, MOMP has recently been shown to display potent pro-inflammatory effects. These include mitochondrial DNA dependent activation of cGAS-STING signaling leading to a type I interferon response. Secondly, via an IAP-regulated mechanism, MOMP can engage pro-inflammatory NF-κB signaling. During cell death, apoptotic caspase activity inhibits mitochondrial dependent inflammation. Importantly, by engaging an immunogenic form of cell death, inhibiting caspase function can effectively inhibit tumorigenesis. Unexpectedly, these studies reveal mitochondria as inflammatory signaling hubs during cell death and demonstrate its potential for therapeutic exploitation.

6.
Biochim Biophys Acta Gen Subj ; 1863(6): 1088-1097, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30928491

RESUMO

BACKGROUND: Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6. Mammals cannot synthesize vitamin B6, so they rely on dietary uptake of the different B6 forms, and via the B6 salvage pathway they interconvert them into PLP. Humans possess three enzymes in this pathway: pyridoxal kinase, pyridox(am)ine phosphate oxidase and pyridoxal phosphatase. Besides these, a fourth enzyme has been described in plants and yeast but not in humans: pyridoxal reductase. METHODS: We analysed B6 vitamers in remnant CSF samples of PLP-treated patients and four mammalian cell lines (HepG2, Caco2, HEK293 and Neuro-2a) supplemented with PL as the sole source of vitamin B6. RESULTS: Strong accumulation of pyridoxine (PN) in CSF of PLP-treated patients was observed, suggesting the existence of a PN-forming enzyme. Our in vitro studies show that all cell lines reduce PL to PN in a time- and dose-dependent manner. We compared the amino acid sequences of known PL reductases to human sequences and found high homology for members of the voltage-gated potassium channel beta subunits and the human aldose reductases. Pharmacological inhibition and knockout of these proteins show that none of the candidates is solely responsible for PL reduction to PN. CONCLUSIONS: We show evidence for the presence of PL reductase activity in humans. Further studies are needed to identify the responsible protein. GENERAL SIGNIFICANCE: This study expands the number of enzymes with a role in B6 salvage pathway. We hypothesize a protective role of PL reductase(s) by limiting the intracellular amount of free PL and PLP.


Assuntos
Oxirredutases do Álcool/metabolismo , Vitamina B 6 , Células CACO-2 , Células HEK293 , Células Hep G2 , Humanos , Piridoxina/metabolismo , Vitamina B 6/farmacocinética , Vitamina B 6/farmacologia
7.
Cancer Discov ; 9(5): 617-627, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837243

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) develops a pronounced stromal response reflecting an aberrant wound-healing process. This stromal reaction features transdifferentiation of tissue-resident pancreatic stellate cells (PSC) into activated cancer-associated fibroblasts, a process induced by PDAC cells but of unclear significance for PDAC progression. Here, we show that PSCs undergo a dramatic lipid metabolic shift during differentiation in the context of pancreatic tumorigenesis, including remodeling of the intracellular lipidome and secretion of abundant lipids in the activated, fibroblastic state. Specifically, stroma-derived lysophosphatidylcholines support PDAC cell synthesis of phosphatidylcholines, key components of cell membranes, and also facilitate production of the potent wound-healing mediator lysophosphatidic acid (LPA) by the extracellular enzyme autotaxin, which is overexpressed in PDAC. The autotaxin-LPA axis promotes PDAC cell proliferation, migration, and AKT activation, and genetic or pharmacologic autotaxin inhibition suppresses PDAC growth in vivo. Our work demonstrates how PDAC cells exploit the local production of wound-healing mediators to stimulate their own growth and migration. SIGNIFICANCE: Our work highlights an unanticipated role for PSCs in producing the oncogenic LPA signaling lipid and demonstrates how PDAC tumor cells co-opt the release of wound-healing mediators by neighboring PSCs to promote their own proliferation and migration.See related commentary by Biffi and Tuveson, p. 578.This article is highlighted in the In This Issue feature, p. 565.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Lisofosfatidilcolinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estreladas do Pâncreas/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Células Estromais/metabolismo , Animais , Carcinoma Ductal Pancreático/patologia , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/patologia , Transdução de Sinais , Células Estromais/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Hum Mol Genet ; 28(1): 96-104, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239721

RESUMO

Loss-of-function mutations in glutaminase (GLS), the enzyme converting glutamine into glutamate, and the counteracting enzyme glutamine synthetase (GS) cause disturbed glutamate homeostasis and severe neonatal encephalopathy. We report a de novo Ser482Cys gain-of-function variant in GLS encoding GLS associated with profound developmental delay and infantile cataract. Functional analysis demonstrated that this variant causes hyperactivity and compensatory downregulation of GLS expression combined with upregulation of the counteracting enzyme GS, supporting pathogenicity. Ser482Cys-GLS likely improves the electrostatic environment of the GLS catalytic site, thereby intrinsically inducing hyperactivity. Alignment of +/-12.000 GLS protein sequences from >1000 genera revealed extreme conservation of Ser482 to the same degree as catalytic residues. Together with the hyperactivity, this indicates that Ser482 is evolutionarily preserved to achieve optimal-but submaximal-GLS activity. In line with GLS hyperactivity, increased glutamate and decreased glutamine concentrations were measured in urine and fibroblasts. In the brain (both grey and white matter), glutamate was also extremely high and glutamine was almost undetectable, demonstrated with magnetic resonance spectroscopic imaging at clinical field strength and subsequently supported at ultra-high field strength. Considering the neurotoxicity of glutamate when present in excess, the strikingly high glutamate concentrations measured in the brain provide an explanation for the developmental delay. Cataract, a known consequence of oxidative stress, was evoked in zebrafish expressing the hypermorphic Ser482Cys-GLS and could be alleviated by inhibition of GLS. The capacity to detoxify reactive oxygen species was reduced upon Ser482Cys-GLS expression, providing an explanation for cataract formation. In conclusion, we describe an inborn error of glutamate metabolism caused by a GLS hyperactivity variant, illustrating the importance of balanced GLS activity.


Assuntos
Glutaminase/genética , Glutaminase/fisiologia , Adolescente , Animais , Encéfalo/metabolismo , Catarata/genética , Pré-Escolar , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Feminino , Fibroblastos , Mutação com Ganho de Função/genética , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/fisiologia , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Masculino , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA