Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 480: 153312, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36075290

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a family of man-made chemicals with currently over 4'700 compounds identified. While toxicological data are available for some of the legacy PFAS, such as PFOA and PFOS, a knowledge gap remains concerning both emerging and legacy PFAS' toxicity due to the diversity of the PFAS. Therefore, a better understanding of the PFAS structure-activity relationship may prove helpful. The present study investigated a potential structure-activity relationship between PFAS and hepatotoxicity. As such, the effects of thirteen PFAS with varying carbon chain-length and functional head-groups (in a concentration range of 0-800 µM) on the cell viability of HepG2 cells and intracellular reactive oxygen species formation have been tested using the MTT and DCFH assay, respectively. The exposure times were either 3 or 24 h. In addition, intracellular PFAS levels were determined in HepG2 after 24 h exposure. The present study demonstrated that the cytotoxicity of PFAS is dependent on their chain-length as cell viability decreased with increasing chain-length at both exposure times. Calculated Relative Potency Factors (RPF), based on the TC50 values, were used for a tentative ranking of PFAS regarding their hepatotoxicity: PFNA ˃ PFDA ˃ PFOS ≥ PFOA ˃ PFHxS ˃ PFBS ˃˃ PFHpA = PFHxA = PFBA = PFPrA = 6:2 FTOH = 4:2 = FTOH = 3:1 FTOH. Similar results were observed regarding intracellular reactive oxygen species generation at both exposure times, with a tentative ranking of: PFNA ˃ PFOS ˃ PFOA ≥ PFDA ˃ PFHxS ˃ PFBS ˃ PFBA ˃ PFHpA ≥ PFHxA ˃ PFPrA ˃ 6:2 FTOH = 4:2 FTOH = 3:1 FTOH. Moreover, a concentration-dependent reactive oxygen species generation has been observed for all PFSAs and PFCAs, but not for the FTOHs. In conclusion, the carbon chain-length and functional head-group of a PFAS determine their in vitro toxicity for the two toxicological endpoints assessed in the present study. Moreover, no effects were observed for the tested FTOHs. As such, the present study established a potential structure-activity relationship that opens the possibility of developing a predictive model to help with the risk assessment of PFAS in the future.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Carbono , Poluentes Ambientais/farmacologia , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Células Hep G2 , Humanos , Espécies Reativas de Oxigênio , Relação Estrutura-Atividade
2.
Toxicology ; 468: 153116, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35121066

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are a group of synthetic compounds with a wide range of industrial applications. PFOA and PFOS have been the most extensively studied and have been associated with hepatotoxicity. Recently, the interaction with cytochrome P450 (CYP) has been proposed as a potential key molecular event leading to PFAS-induced hepatotoxicity. In the present study, we aimed to determine a structure-activity relationship between thirteen PFASs and their inhibitory potential on the activities of four CYPs (CYP2E1, CYP2D6, CYP3A4 and CYP2C19). The influence of PFASs (5-3200 µM) on CYP enzyme activities was measured using the Vivid® P450 metabolism assays. Using the same assays, Michaelis-Menten saturation curves were determined to explore the type of PFAS-induced CYP inhibition. Most PFASs were capable of inhibiting activity of the tested CYPs, as shown by their IC50 values. CYP2E1 is particularly inhibited by 3:1 FTOH, PFOA, and PFOS, whereas CYP2D6 is inhibited by PFHxS, PFHpA, PFOA, PFOS, PFNA, and PFDA. Additionally, CYP3A4 is most strongly inhibited by PFHxS, PFOA, PFOS, PFNA, and PFDA. Finally, CYP2C19 is inhibited by PFBS, PFHxS, PFHpA, PFOA, PFOS, PFNA, and PFDA. Interestingly, PFHxA and PFHxS induced an increase in CYP2E1 activity, whereas 4:2 FTOH strongly induced CYP2D6 activity. The mechanism of inhibition of CYPs by PFASs differed per CYP isoenzyme. CYP3A4 was competitively inhibited by PFBS, PFHxS, PFOS, PFNA and PFDA and non-competitively by PFOA. Additionally, CYP2C19 was competitively inhibited by PFHxA, PFOS and PFNA, whereas PFBS and PFHxS induced a mixed inhibition. Inhibition of CYP2C19 by PFHpA was atypical with an increased Vmax and a decreased Km. Finally, PFHxS competitively inhibited CYP2D6, whereas PFBS, PFOA, PFOS, PFDA and PFNA induced an atypical inhibition. Our results show that CYP inhibition by PFASs appears to be structure-dependent as well as CYP dependent. Inhibition of CYP2D6, CYP2C19 and CYP3A4 increased with increasing chain-lengths between six and nine carbons. The PFTOHs were only able to inhibit CYP2E1 and did not affect any of the other CYPS. Some PFASs remarkably induced the enzyme activity of CYPs. These results indicate that in addition to PFOA and PFOS, multiple novel PFASs may alter drug metabolism by the interference with CYPs.


Assuntos
Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Fluorocarbonos/farmacologia , Citocromo P-450 CYP2C19/efeitos dos fármacos , Citocromo P-450 CYP2D6/efeitos dos fármacos , Citocromo P-450 CYP3A/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Concentração Inibidora 50
3.
Food Funct ; 12(15): 6691-6696, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34219131

RESUMO

Thermal treatment of food products leads to the formation of dietary advanced glycation endproducts (dAGEs). It was previously shown that dAGEs induce TNF-α secretion in human macrophage-like cells. To what extent gastrointestinal digestion of dAGEs influences these pro-inflammatory effects and what the implications of these pro-inflammatory characteristics further down the human gastrointestinal tract are, are currently unknown. In one of our previous studies, dAGEs were digested using the TNO gastroIntestinal Model and analysed for dAGE quantity after digestion. In the current study both digested and undigested dAGEs were used to expose human macrophage-like cells, which were subsequently analysed for TNF-α secretion. In addition, the obtained digests were fractionated, and human macrophage-like cells were exposed to the different fractions to determine whether specific fractions induce TNF-α secretion. The results show that digested dAGEs have an increased pro-inflammatory effect on human macrophage-like cells compared to undigested dAGEs. This paper therefore shows that the digestion of food-components, and specifically dAGEs, plays an important role in determining their biological activity.


Assuntos
Digestão/fisiologia , Trato Gastrointestinal/metabolismo , Produtos Finais de Glicação Avançada/imunologia , Produtos Finais de Glicação Avançada/metabolismo , Caseínas/imunologia , Caseínas/metabolismo , Linhagem Celular , Humanos , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
PLoS One ; 10(9): e0136618, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26352940

RESUMO

UNLABELLED: The use of paracetamol as tool to determine gastric emptying was evaluated in a cross over study. Twelve healthy volunteers were included and each of them consumed two low and two high caloric meals. Paracetamol was mixed with a liquid meal and administered by a nasogastric feeding tube. The post prandial paracetamol plasma concentration time curve in all participants and the paracetamol concentration in the stomach content in six participants were determined. It was found that after paracetamol has left the stomach, based on analysis of the stomach content, there was still a substantial rise in the plasma paracetamol concentration time curve. Moreover, the difference in gastric emptying between high and low caloric meals was missed using the plasma paracetamol concentration time curve. The latter curves indicate that (i) part of the paracetamol may leave the stomach much quicker than the meal and (ii) part of the paracetamol may be relatively slowly absorbed in the duodenum. This can be explained by the partition of the homogenous paracetamol-meal mixture in the stomach in an aqueous phase and a solid bolus. The aqueous phase leaves the stomach quickly and the paracetamol in this phase is quickly absorbed in the duodenum, giving rise to the relatively steep increase of the paracetamol concentration in the plasma. The bolus leaves the stomach relatively slowly, and encapsulation by the bolus results in relatively slow uptake of paracetamol from the bolus in the duodenum. These findings implicate that paracetamol is not an accurate post prandial marker for gastric emptying. The paracetamol concentration time curve rather illustrates the food-drug interaction on absorption, which is not only governed by gastric emptying. TRIAL REGISTRATION: ClinicalTrials.gov NCT01335503 Nederlands Trial Register NTR2780.


Assuntos
Acetaminofen/farmacocinética , Esvaziamento Gástrico/fisiologia , Adolescente , Adulto , Estudos Cross-Over , Feminino , Interações Alimento-Droga , Humanos , Masculino , Período Pós-Prandial , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA