Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biophys J ; 123(5): 527-537, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38258291

RESUMO

The mechanical forces that cells experience from the tissue surrounding them are crucial for their behavior and development. Experimental studies of such mechanical forces require a method for measuring them. A widely used approach in this context is bead deformation analysis, where spherical particles are embedded into the tissue. The deformation of the particles then allows to reconstruct the mechanical stress acting on them. Existing approaches for this reconstruction are either very time-consuming or not sufficiently general. In this article, we present an analytical approach to this problem based on an expansion in solid spherical harmonics that allows us to find the complete stress tensor describing the stress acting on the tissue. Our approach is based on the linear theory of elasticity and uses an ansatz specifically designed for deformed spherical bodies. We clarify the conditions under which this ansatz can be used, making our results useful also for other contexts in which this ansatz is employed. Our method can be applied to arbitrary radial particle deformations and requires a very low computational effort. The usefulness of the method is demonstrated by an application to experimental data.


Assuntos
Elasticidade , Estresse Mecânico
2.
J Phys Condens Matter ; 35(31)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36917854

RESUMO

The study of active soft matter has developed into one of the most rapidly growing areas of physics. Field theories, which can be developed either via phenomenological considerations or by coarse-graining of a microscopic model, are a very useful tool for understanding active systems. Here, we provide a detailed review of a particular coarse-graining procedure, theinteraction-expansion method(IEM). The IEM allows for the systematic microscopic derivation of predictive field theories for systems of interacting active particles. We explain in detail how it can be used for a microscopic derivation of active model B+, which is a widely used scalar active matter model. Extensions and possible future applications are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA