Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786069

RESUMO

In recent years, there has been a surge in demand for and research focus on cell therapy, driven by the tissue-regenerative and disease-treating potentials of stem cells. Among the candidates, dental pulp stem cells (DPSCs) or human exfoliated deciduous teeth (SHED) have garnered significant attention due to their easy accessibility (non-invasive), multi-lineage differentiation capability (especially neurogenesis), and low immunogenicity. Utilizing these stem cells for clinical purposes requires careful culture techniques such as excluding animal-derived supplements. Human platelet lysate (hPL) has emerged as a safer alternative to fetal bovine serum (FBS) for cell culture. In our study, we assessed the impact of hPL as a growth factor supplement for culture medium, also conducting a characterization of SHED cultured in hPL-supplemented medium (hPL-SHED). The results showed that hPL has effects in enhancing cell proliferation and migration and increasing cell survivability in oxidative stress conditions induced by H2O2. The morphology of hPL-SHED exhibited reduced size and elongation, with a differentiation capacity comparable to or even exceeding that of SHED cultured in a medium supplemented with fetal bovine serum (FBS-SHED). Moreover, no evidence of chromosome abnormalities or tumor formation was detected. In conclusion, hPL-SHED emerges as a promising candidate for cell therapy, exhibiting considerable potential for clinical investigation.


Assuntos
Plaquetas , Diferenciação Celular , Proliferação de Células , Células-Tronco , Dente Decíduo , Humanos , Dente Decíduo/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Plaquetas/metabolismo , Bovinos , Diferenciação Celular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Polpa Dentária/citologia , Movimento Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Células Cultivadas , Extratos Celulares/farmacologia , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
2.
Geriatrics (Basel) ; 9(2)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38667519

RESUMO

(1) Background: Up until now, there is still no medicine that can cure dementia, but there are some that can only help slow down the progression of the disease and reduce some symptoms. Pharmacological interventions for dementia have many side effects and are expensive, so non-pharmacological treatments for dementia become more urgent. This study aimed to evaluate the effectiveness of multifactorial non-pharmacological interventions in dementia patients; (2) Methods: This is a randomized controlled trial conducted in Hai Duong from July 2021 to December 2022. Selected subjects included 88 patients diagnosed with very mild, mild, and moderate dementia, of whom 44 patients were assigned to the intervention group and 44 patients to the control group; (3) Results: For the effectiveness of the non-pharmacological multifactorial intervention on depression severity: in the intervention group, the GDS 15 depression score decreased from 4.8 to 2.9, while, in the control group, the GDS 15 depression score increased by 1.3 points after six months of no intervention. For the effect of the non-pharmacological multifactorial intervention on the level of sleep disturbance, in the intervention group, the PSQI sleep disturbance score decreased by nearly half (from 10.2 to 5.6), while, in the control group, this trend was not clear. For the effect of the non-pharmacological multifactorial intervention on daily functioning: in the intervention group, the ADL and IADL scores improved (1.02 ± 1.32 and 1.23 ± 1.75), while, in the control group, the ADL and IADL scores decreased (0.93 ± 1.2 and 0.98 ± 2.19). For the effect of the non-pharmacological multifactorial intervention on quality of life: in the intervention group, the EQ-5D-5L scores improved (0.17 ± 0.19), while, in the control group, the EQ-5D-5L scores decreased (0.20 ± 0.30); (4) Conclusions: Non-pharmacological multifactorial interventions, including physical activity, cognitive training, listening to educational lectures, and organizing miniature social models, have been shown to improve mental health, self-control, and quality of life.

3.
Reprod Biol ; 23(4): 100798, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37717489

RESUMO

In the present study, we attempted to improve the developmental competence of vitrified immature porcine oocytes by the preservation of mitochondrial properties using Cyclosporin A (CsA, inhibitor of mitochondrial membrane permeability transition) and Docetaxel (stabilizer of microtubules, hence mitochondrial distribution). In Experiment 1, Mitotracker red staining revealed reduced mitochondrial activity (MA) in vitrified/warmed oocytes at 0 and 22 h of in vitro maturation (IVM) compared with fresh ones. However, by at 46 h of IVM, MA levels in vitrified oocytes were similar to those in fresh control. Treatment of oocytes with CsA or Docetaxel improved MA at 0 h and 22 h of IVM compared with non-treated vitrified oocytes. However, there were no significant differences among groups in percentages of survival, maturation and embryo development after subsequent IVM and parthenogenetic activation. Nevertheless, a pretreatment with a combination of 10 µg/mL CsA and 0.05 µM Docetaxel improved the blastocyst formation of vitrified oocytes compared with non-treatment counterparts (11.2 ± 1.6% vs 5.9 ± 1.6%, P < 0.05). In conclusion, vitrification reduced mitochondrial activity in GV-stage oocytes during 0-22 h of IVM; however, it was normalized by 46 h IVM. Docetaxel or CsA pretreatment alone did not improve development competence of vitrified oocytes. However, pretreatment with a combination of CsA and Docetaxel could improve blastocyst formation rates.


Assuntos
Ciclosporina , Vitrificação , Suínos , Animais , Ciclosporina/farmacologia , Docetaxel/farmacologia , Criopreservação/veterinária , Oócitos , Desenvolvimento Embrionário
4.
Pharmaceutics ; 15(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376149

RESUMO

Calcium silicate-based cement (CSC) is a pharmaceutical agent that is widely used in dentistry. This bioactive material is used for vital pulp treatment due to its excellent biocompatibility, sealing ability, and antibacterial activity. Its drawbacks include a long setting time and poor maneuverability. Hence, the clinical properties of CSC have recently been improved to decrease its setting time. Despite the widespread clinical usage of CSC, there is no research comparing recently developed CSCs. Therefore, the purpose of this study is to compare the physicochemical, biological, and antibacterial properties of four commercial CSCs: two powder-liquid mix types (RetroMTA® [RETM]; Endocem® MTA Zr [ECZR]) and two premixed types (Well-Root™ PT [WRPT]; Endocem® MTA premixed [ECPR]). Each sample was prepared using circular Teflon molds, and tests were conducted after 24 h of setting. The premixed CSCs exhibited a more uniform and less rough surface, higher flowability, and lower film thickness than the powder-liquid mix CSCs. In the pH test, all CSCs showed values between 11.5 and 12.5. In the biological test, cells exposed to ECZR at a concentration of 25% showed greater cell viability, but none of the samples showed a significant difference at low concentration (p > 0.05). Alkaline phosphatase staining revealed that cells exposed to ECZR underwent more odontoblast differentiation than the cells exposed to the other materials; however, no significant difference was observed at a concentration of 12.5% (p > 0.05). In the antibacterial test, the premixed CSCs showed better results than the powder-liquid mix CSCs, and ECPR yielded the best results, followed by WRPT. In conclusion, the premixed CSCs showed improved physical properties, and of the premixed types, ECPR exhibited the highest antibacterial properties. For biological properties, none of these materials showed significant differences at 12.5% dilution. Therefore, ECPR may be a promising material with high antibacterial activity among the four CSCs, but further investigation is needed for clinical situations.

5.
Pharmaceutics ; 15(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37111558

RESUMO

This study aimed to investigate the impact of different viscosities of silicone oil on the physicochemical, pre-clinical usability, and biological properties of a sodium iodide paste. Six different paste groups were created by mixing therapeutic molecules, sodium iodide (D30) and iodoform (I30), with calcium hydroxide and one of the three different viscosities of silicone oil (high (H), medium (M), and low (L)). The study evaluated the performance of these groups, including I30H, I30M, I30L, D30H, D30M, and D30L, using multiple parameters such as flow, film thickness, pH, viscosity, and injectability, with statistical analysis (p < 0.05). Remarkably, the D30L group demonstrated superior outcomes compared to the conventional iodoform counterpart, including a significant reduction in osteoclast formation, as examined through TRAP, c-FOS, NFATc1, and Cathepsin K (p < 0.05). Additionally, mRNA sequencing showed that the I30L group exhibited increased expression of inflammatory genes with upregulated cytokines compared to the D30L group. These findings suggest that the optimized viscosity of the sodium iodide paste (D30L) may lead to clinically favorable outcomes, such as slower root resorption, when used in primary teeth. Overall, the results of this study suggest that the D30L group shows the most satisfactory outcomes, which may be a promising root-filling material that could replace conventional iodoform-based pastes.

6.
Cells ; 11(21)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359794

RESUMO

Regenerative endodontic treatment based on tissue engineering has recently gained interest in contemporary restorative dentistry. However, low survival rates and poor potential differentiation of stem cells could undermine the success rate of pulp regenerative therapy. Human gingival fibroblast-conditioned medium (hGF-CM) has been considered a potential therapy for tissue regeneration due to its stability in maintaining multiple factors essential for tissue regeneration compared to live cell transplantation. This study aimed to investigate the potency of hGF-CM on stem cells from human dental pulp (DPSC) in pulp regeneration. A series of experiments confirmed that hGF-CM contributes to a significant increase in proliferation, migration capability, and cell viability of DPSC after H2O2 exposure. Moreover, it has been proved to facilitate the odontogenic differentiation of DPSC via qRT-PCR, ALP (alkaline phosphatase), and ARS (Alizarin Red S) staining. It has been discovered that such highly upregulated odontogenesis is related to certain types of ECM proteins (collagen and laminin) from hGF-CM via proteomics. In addition, it is found that the ERK pathway is a key mechanism via inhibition assay based on RNA-seq result. These findings demonstrate that hGF-CM could be beneficial biomolecules for pulp regeneration.


Assuntos
Meios de Cultivo Condicionados , Polpa Dentária , Peróxido de Hidrogênio , Engenharia Tecidual , Humanos , Fosfatase Alcalina/metabolismo , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/metabolismo , Fibroblastos/metabolismo , Regeneração , Gengiva/citologia , Gengiva/metabolismo , Engenharia Tecidual/métodos
7.
Pharmaceutics ; 14(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35745710

RESUMO

Silver diamine fluoride (SDF) is an outstanding dental material for arresting and preventing caries, but some drawbacks, such as high flowability due to low viscosity and cytotoxicity to the pulp, have been reported. To overcome these problems, copper-doped bioactive glass nanoparticles (CuBGns) were combined with SDF. After synthesis, CuBGns were examined by physical analysis and added in SDF at different weight/volume% (SDF@CuBGn). After assessing physical properties (viscosity and flowability) of SDF@CuBGn, physicochemical properties (morphology before and after simulated body fluid (SBF) immersion and ion release) of SDF@CuBGn-applied hydroxyapatite (HA) discs were evaluated. Biological properties were further evaluated by cytotoxicity test to pulp stem cells and antibacterial effect on cariogenic organisms (Streptococcus mutans and Staphylococcus aureus). Combining CuBGns in SDF increased the viscosity up to 3 times while lowering the flowability. More CuBGns and functional elements in SDF (Ag and F) were deposited on the HA substrate, even after SBF immersion test for 14 days, and they showed higher Cu, Ca, and Si release without changing F and Ag release. Cell viability test suggested lower cytotoxicity in SDF@CuBGn-applied HA, while CuBGns in SDF boosted antibacterial effect against S. aureus, ~27% in diameter of agar diffusion test. In conclusion, the addition of CuBGn to SDF enhances viscosity, Ag and F deposition, and antibacterial effects while reducing cell toxicity, highlighting the role of bioactive CuBGns for regulating physical and biological effects of dental materials.

8.
Molecules ; 27(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35566277

RESUMO

Therapeutic iodoform (CHI3) is commonly used as a root-filling material for primary teeth; however, the side effects of iodoform-containing materials, including early root resorption, have been reported. To overcome this problem, a water-soluble iodide (NaI)-incorporated root-filling material was developed. Calcium hydroxide, silicone oil, and NaI were incorporated in different weight proportions (30:30:X), and the resulting material was denoted DX (D5~D30), indicating the NaI content. As a control, iodoform instead of NaI was incorporated at a ratio of 30:30:30, and the material was denoted I30. The physicochemical (flow, film thickness, radiopacity, viscosity, water absorption, solubility, and ion releases) and biological (cytotoxicity, TRAP, ARS, and analysis of osteoclastic markers) properties were determined. The amount of iodine, sodium, and calcium ion releases and the pH were higher in D30 than I30, and the highest level of unknown extracted molecules was detected in I30. In the cell viability test, all groups except 100% D30 showed no cytotoxicity. In the 50% nontoxic extract, D30 showed decreased osteoclast formation compared with I30. In summary, NaI-incorporated materials showed adequate physicochemical properties and low osteoclast formation compared to their iodoform-counterpart. Thus, NaI-incorporated materials may be used as a substitute for iodoform-counterparts in root-filling materials after further (pre)clinical investigation.


Assuntos
Materiais Restauradores do Canal Radicular , Hidróxido de Cálcio , Materiais Restauradores do Canal Radicular/farmacologia , Iodeto de Sódio , Dente Decíduo , Água
9.
Biomedicines ; 10(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35453661

RESUMO

Pulp regeneration has recently attracted interest in modern dentistry. However, the success ratio of pulp regeneration is low due to the compromising potential of stem cells, such as their survival, migration, and odontoblastic differentiation. Stem cells from human exfoliated deciduous teeth (SHED) have been considered a promising tool for regenerative therapy due to their ability to secrete multiple factors that are essential for tissue regeneration, which is achieved by minimally invasive procedures with fewer ethical or legal concerns than those of other procedures. The aim of this study is to investigate the potency of SHED-derived conditioned media (SHED CM) on dental pulp stem cells (DPSCs), a major type of mesenchymal stem cells for dental pulp regeneration. Our results show the promotive efficiency of SHED CM on the proliferation, survival rate, and migration of DPSCs in a dose-dependent manner. Upregulation of odontoblast/osteogenic-related marker genes, such as ALP, DSPP, DMP1, OCN, and RUNX2, and enhanced mineral deposition of impaired DPSCs are also observed in the presence of SHED CM. The analysis of SHED CM found that a variety of cytokines and growth factors have positive effects on cell proliferation, migration, anti-apoptosis, and odontoblast/osteogenic differentiation. These findings suggest that SHED CM could provide some benefits to DPSCs in pulp regeneration.

10.
Anim Sci J ; 90(7): 840-848, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31006939

RESUMO

We report the cryopreservation of oocytes from Ban miniature pigs which are endemic in Vietnam. Immature cumulus-oocyte complexes were collected from antral follicles of 7-8 mo old female cyclic Ban pigs and vitrified in micro-drops. Oocyte morphology, lipid content, post-warming survival, nuclear maturation, and embryo development were compared to those of oocytes from commercially slaughtered Landrace × Large white hybrid pigs. The size of oocytes in the two breeds was similar. However, significantly lower amounts of intracellular lipid were detected in Ban oocytes. There was no difference (p > 0.05) between Ban and Landrace × Large white oocytes in percentages of post-warming survival (93.1 ± 3.4% vs. 70.7 ± 16.7%, respectively) and nuclear maturation after in vitro maturation (80.4 ± 5.1% vs. 90.0 ± 1.3% respectively). Similarly, cleavage (30.8 ± 7.8% vs. 10.3 ± 6.1%, respectively) and blastocyst development rates (9.4 ± 5.0% vs. 0.79 ± 0.79, respectively) were not different (p > 0.05) between vitrified Ban and Landrace × Large white oocytes after in vitro fertilization and embryo culture. In conclusion, high survival and maturation rates were achieved after vitrification of immature Ban oocytes and their cryo-tolerance was similar to that of Landrace × Large white oocytes, despite the difference in lipid content. We succeeded to generate reasonable rates of blastocysts from vitrified Ban oocytes by in vitro fertilization.


Assuntos
Criopreservação/métodos , Oócitos , Porco Miniatura , Preservação de Tecido/métodos , Animais , Blastocisto , Sobrevivência Celular , Células Cultivadas , Desenvolvimento Embrionário , Feminino , Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos , Metabolismo dos Lipídeos , Oócitos/citologia , Oócitos/metabolismo , Oócitos/fisiologia , Manejo de Espécimes/métodos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA