Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3162, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605024

RESUMO

The organization of membrane proteins between and within membrane-bound compartments is critical to cellular function. Yet we lack approaches to regulate this organization in a range of membrane-based materials, such as engineered cells, exosomes, and liposomes. Uncovering and leveraging biophysical drivers of membrane protein organization to design membrane systems could greatly enhance the functionality of these materials. Towards this goal, we use de novo protein design, molecular dynamic simulations, and cell-free systems to explore how membrane-protein hydrophobic mismatch could be used to tune protein cotranslational integration and organization in synthetic lipid membranes. We find that membranes must deform to accommodate membrane-protein hydrophobic mismatch, which reduces the expression and co-translational insertion of membrane proteins into synthetic membranes. We use this principle to sort proteins both between and within membranes, thereby achieving one-pot assembly of vesicles with distinct functions and controlled split-protein assembly, respectively. Our results shed light on protein organization in biological membranes and provide a framework to design self-organizing membrane-based materials with applications such as artificial cells, biosensors, and therapeutic nanoparticles.


Assuntos
Células Artificiais , Proteínas de Membrana , Membrana Celular/metabolismo , Membranas/metabolismo , Proteínas de Membrana/metabolismo , Lipossomos , Bicamadas Lipídicas/química
2.
Small Methods ; 7(12): e2201718, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37116099

RESUMO

The surface modification of membrane-based nanoparticles, such as liposomes, polymersomes, and lipid nanoparticles, with targeting molecules, such as binding proteins, is an important step in the design of therapeutic materials. However, this modification can be costly and time-consuming, requiring cellular hosts for protein expression and lengthy purification and conjugation steps to attach proteins to the surface of nanocarriers, which ultimately limits the development of effective protein-conjugated nanocarriers. Here, the use of cell-free protein synthesis systems to rapidly create protein-conjugated membrane-based nanocarriers is demonstrated. Using this approach, multiple types of functional binding proteins, including affibodies, computationally designed proteins, and scFvs, can be cell-free expressed and conjugated to liposomes in one-pot. The technique can be expanded further to other nanoparticles, including polymersomes and lipid nanoparticles, and is amenable to multiple conjugation strategies, including surface attachment to and integration into nanoparticle membranes. Leveraging these methods, rapid design of bispecific artificial antigen presenting cells and enhanced delivery of lipid nanoparticle cargo in vitro is demonstrated. It is envisioned that this workflow will enable the rapid generation of membrane-based delivery systems and bolster our ability to create cell-mimetic therapeutics.


Assuntos
Lipossomos , Nanopartículas , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química
3.
Biomacromolecules ; 24(4): 1574-1584, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36943688

RESUMO

The addition of both cell-targeting moieties and polyethylene glycol (PEG) to nanoparticle (NP) drug delivery systems is a standard approach to improve the biodistribution, specificity, and uptake of therapeutic cargo. The spatial presentation of these molecules affects avidity of the NP to target cells in part through an interplay between the local ligand concentration and the steric hindrance imposed by PEG molecules. Here, we show that lipid phase separation in nanoparticles can modulate liposome avidity by changing the proximity of PEG and targeting protein molecules on a nanoparticle surface. Using lipid-anchored nickel-nitrilotriacetic acid (Ni-NTA) as a model ligand, we demonstrate that the attachment of lipid anchored Ni-NTA and PEG molecules to distinct lipid domains in nanoparticles can enhance liposome binding to cancer cells by increasing ligand clustering and reducing steric hindrance. We then use this technique to enhance the binding of RGD-modified liposomes, which can bind to integrins overexpressed on many cancer cells. These results demonstrate the potential of lipid phase separation to modulate the spatial presentation of targeting and shielding molecules on lipid nanocarriers, offering a powerful tool to enhance the efficacy of NP drug delivery systems.


Assuntos
Lipossomos , Polietilenoglicóis , Lipossomos/química , Ligantes , Distribuição Tecidual , Polietilenoglicóis/química , Lipídeos/química , Sistemas de Liberação de Medicamentos/métodos
4.
Trends Biotechnol ; 41(3): 276-277, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36646525

RESUMO

Morsut et al. reported a synthetic receptor system, based on the natural Notch receptor, with customizable input and output functions. Their work on advanced receptor design expands the reach of synthetic receptor systems. Incorporating new protein design tools with better-understood membrane biophysics will create the next generation of engineered receptors.


Assuntos
Engenharia de Proteínas , Receptores Artificiais
5.
Nano Lett ; 22(7): 2627-2634, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35298184

RESUMO

Ligand spatial presentation and density play important roles in signaling pathways mediated by cell receptors and are critical parameters when designing protein-conjugated therapeutic nanoparticles. Here, we harness lipid phase separation to spatially control the protein presentation on lipid vesicles. We use this system to improve the cytotoxicity of TNF-related apoptosis inducing ligand (TRAIL), a therapeutic anticancer protein. Vesicles with phase-separated TRAIL presentation induce more cell death in Jurkat cancer cells than vesicles with uniformly presented TRAIL, and cytotoxicity is dependent on TRAIL density. We assess this relationship in other cancer cell lines and demonstrate that phase-separated vesicles with TRAIL only enhance cytotoxicity through one TRAIL receptor, DR5, while another TRAIL receptor, DR4, is less sensitive to TRAIL density. This work demonstrates a rapid and accessible method to control protein conjugation and density on vesicles that can be adopted to other nanoparticle systems to improve receptor signaling by nanoparticles.


Assuntos
Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Ligante Indutor de Apoptose Relacionado a TNF , Apoptose , Linhagem Celular Tumoral , Humanos , Ligantes , Lipídeos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
6.
Angew Chem Int Ed Engl ; 58(51): 18683-18690, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31596992

RESUMO

Targeted vesicle fusion is a promising approach to selectively control interactions between vesicle compartments and would enable the initiation of biological reactions in complex aqueous environments. Here, we explore how two features of vesicle membranes, DNA tethers and phase-segregated membranes, promote fusion between specific vesicle populations. Membrane phase-segregation provides an energetic driver for membrane fusion that increases the efficiency of DNA-mediated fusion events. The orthogonality provided by DNA tethers allows us to direct fusion and delivery of DNA cargo to specific vesicle populations. Vesicle fusion between DNA-tethered vesicles can be used to initiate in vitro protein expression to produce model soluble and membrane proteins. Engineering orthogonal fusion events between DNA-tethered vesicles provides a new strategy to control the spatiotemporal dynamics of cell-free reactions, expanding opportunities to engineer artificial cellular systems.


Assuntos
DNA/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA