Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 135(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35975715

RESUMO

Recent studies have revealed that the growth rate of budding yeast and mammalian cells varies during the cell cycle. By linking a multitude of signals to cell growth, the highly conserved target of rapamycin complex 1 (TORC1) and protein kinase A (PKA) pathways are prime candidates for mediating the dynamic coupling between growth and division. However, measurements of TORC1 and PKA activity during the cell cycle are still lacking. By following the localization dynamics of two TORC1 and PKA targets via time-lapse microscopy in hundreds of yeast (Saccharomyces cerevisiae) cells, we found that the activity of these pathways towards ribosome biogenesis fluctuates in synchrony with the cell cycle even under constant external conditions. Analysis of the effects of mutations of upstream TORC1 and PKA regulators suggests that internal metabolic signals partially mediate these activity changes. Our study reveals a new aspect of TORC1 and PKA signaling, which will be important for understanding growth regulation during the cell cycle.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Ciclo Celular/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Fatores de Transcrição
3.
ACS Synth Biol ; 11(3): 1129-1141, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35180343

RESUMO

Fluorescent protein (FP) maturation can limit the accuracy with which dynamic intracellular processes are captured and reduce the in vivo brightness of a given FP in fast-dividing cells. The knowledge of maturation timescales can therefore help users determine the appropriate FP for each application. However, in vivo maturation rates can greatly deviate from in vitro estimates that are mostly available. In this work, we present the first systematic study of in vivo maturation for 12 FPs in budding yeast. To overcome the technical limitations of translation inhibitors commonly used to study FP maturation, we implemented a new approach based on the optogenetic stimulations of FP expression in cells grown under constant nutrient conditions. Combining the rapid and orthogonal induction of FP transcription with a mathematical model of expression and maturation allowed us to accurately estimate maturation rates from microscopy data in a minimally invasive manner. Besides providing a useful resource for the budding yeast community, we present a new joint experimental and computational approach for characterizing FP maturation, which is applicable to a wide range of organisms.


Assuntos
Saccharomycetales , Corantes , Expressão Gênica , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Optogenética , Saccharomycetales/genética , Saccharomycetales/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA