Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 273: 107031, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39067263

RESUMO

Organic anion transporting polypeptides (OATPs) facilitate the cellular uptake of a large number of compounds. Zebrafish Oatp1d1 matches the functional capabilities of human OATP orthologs, particularly in hormone and drug transport. It is highly expressed in the liver and later stages of embryonic development, indicating its critical role in zebrafish physiology and development. Data from previous in vitro analyses have shown a high affinity of zebrafish Oatp1d1 for pharmaceuticals and xenobiotics, providing the basis for further in vivo studies on its defence and developmental functions. Using CRISPR-Cas9 technology, we have generated an Oatp1d1 zebrafish mutant that has highly reduced Oatp1d1 expression in embryos and adult tissues compared to wild type (WT). The absence of Oatp1d1 was confirmed using custom-made antibodies. To evaluate its ecotoxicological relevance, mutant and WT embryos were exposed to increasing concentrations of diclofenac, an NSAID known for its wide and frequent use, environmental pseudo-persistence and ecological implications. WT embryos showed developmental delays and malformations such as spinal curvature, cardiac edema and blood pooling at higher diclofenac concentrations, whereas the Oatp1d1 mutant embryos showed marked resilience, with milder developmental defects and delayed toxic effects. These observations suggest that the absence of Oatp1d1 impedes the efficient entry of diclofenac into hepatocytes, thereby slowing its biotransformation into potentially more toxic metabolites. In addition, the changes in transcript expression of other uptake transporters revealed a highly probable and complex network of compensatory mechanisms. Therefore, the results of this study point to the importance of Oatp1d1-mediated transport of diclofenac, as demonstrated for the first time in vivo using an Oatp1 deficient zebrafish line. Finally, our data indicates that the compensatory role of other transporters with overlapping substrate preferences needs to be considered for a reliable understanding of the physiological and/or defensive role(s) of membrane transporters.

2.
Sci Total Environ ; 901: 165956, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37541507

RESUMO

Zebrafish Mate3 is one of six co-orthologs of human multidrug and toxin extrusion proteins. It is highly expressed in the kidneys, intestine, testes, and brain of males. Initial interaction studies showed its interaction with xenobiotic compounds, suggesting a role in the efflux of toxic compounds. In this study, we aimed to test various environmental contaminants for their interaction with zebrafish Mate3. We developed a stable zebrafish Mate3 cell line and optimized a high-throughput screening assay using DAPI and ASP+ as fluorescent model substrates. To gain insight into the structure and function of the Mate3 protein and relate these to the results of the DAPI and ASP+ transport measurements, we predicted its 3D structure using the AlphaFold2 algorithm. A 3D structure with high per residue confidence scores with 13 transmembrane segments (TMs) was obtained, with topology and mutual positioning characteristic of the Mate protein family in a shape open to the extracellular part. Molecular docking methods were used to identify DAPI and ASP+ binding sites on the surface and in the center of the protein cavity. Because our kinetics experiments combined with molecular docking indicated that there may be additional active sites in zebrafish Mate3, additional cytotoxicity experiments were performed and highly potent Mate3 interactors were identified from a set of 55 different environmental contaminants. Our results suggest that some of the identified interactors may be of environmental concern, as their interaction with Mate3 could lead to an impairment of its normal efflux function, making fish more sensitive to harmful substances commonly released into the aquatic environment. Finally, the quality of zebrafish Mate3 structures predicted by the AlphaFold2 algorithm opens up the possibility of successfully using this tool for in silico research on transport preferences of other Mate proteins.

3.
Microsc Res Tech ; 86(3): 294-310, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36453864

RESUMO

The increasing use of the zebrafish model in biomedical and (eco)toxicological studies aimed at understanding the function of various proteins highlight the importance of optimizing existing methods to study gene and protein expression and localization in this model. In this context, zebrafish cryosections are still underutilized compared with whole-mount preparations. In this study, we used zebrafish embryos (24-120 hpf) to determine key factors for the preparation of high-quality zebrafish cryosections and to determine the optimal protocol for (immuno)fluorescence analyses of Na+ /K+ -ATPase and F-actin, across developmental stages from 1 to 5 dpf. The results showed that the highest quality zebrafish cryosections were obtained after the samples were fixed in 4% paraformaldehyde (PFA) for 1 h, incubated in 2.5% bovine gelatin/25% sucrose mixture, embedded in OCT, and then sectioned to 8 µm thickness at -20°C. Fluorescence microscopy analysis of phalloidin-labeled zebrafish skeletal muscle revealed that 1-h-4% PFA-fixed samples allowed optimal binding of phalloidin to F-actin. Further immunofluorescence analyses revealed detailed localization of F-actin and Na+ /K+ -ATPase in various tissues of the zebrafish and a stage-dependent increase in their respective expression in the somitic muscles and pronephros. Finally, staining of zebrafish cryosections and whole-mount samples revealed organ-specific and zone-dependent localizations of the Na+ /K+ -ATPase α1-subunit. RESEARCH HIGHLIGHTS: This study brings optimization of existing protocols for preparation and use of zebrafish embryos cryosections in (immuno)histological analyses. It reveals stage-dependent localization/expression of F-actin and Na+ /K+ -ATPase in zebrafish embryos.


Assuntos
Actinas , Peixe-Zebra , Animais , Bovinos , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Faloidina/metabolismo , Crioultramicrotomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA